

Underworld

[image: _images/Montage.png]
Underworld [http://www.underworldcode.org] is a Python friendly version of the Underworld code which provides a programmable and flexible front end to all the functionality of the code running in a parallel HPC environment. This gives signficant advantages to the user, with access to the power of Python libraries for setup of complex problems, analysis at runtime, problem steering, and multi physics coupling. While Underworld2 embraces Jupyter Notebooks as the preferred modelling environment, only standard Python is required.

The Underworld2 development team is based in Melbourne, Australia at the University of Melbourne and at Monash University led by Louis Moresi. We would like to acknowledge AuScope Simulation, Analysis and Modelling for providing long term funding which has made the project possible. Additional funding for specific improvements and additional functionality has come from the Australian Research Council [http://www.arc.gov.au]. The Python toolkit was funded by the NeCTAR eresearch_tools program. Underworld was originally developed in collaboration with the Victorian Partnership for Advanced Computing.

Privacy

Note that basic usage metrics are dispatched when you use Underworld. We do this to help
assess the usage of our code which is important in justifying our funding. To opt out, set the UW_NO_USAGE_METRICS environment variable. See PRIVACY.md [https://github.com/underworldcode/underworld2/blob/master/PRIVACY.md] for full details.

Bedtime reading

These papers explain the theory and implementation for Underworld. The code itself can also be cited via the zenodo DOI. There is a master DOI for all releases and releases after 2.6.0 are automatically given a DOI under the master. If you are using a development branch and wish to obtain a DOI for your specific version we ask that you contact us to make an interim release under the master DOI.

[image: DOI] [https://doi.org/10.5281/zenodo.1436039]

Moresi, L., Dufour, F., and Muhlhaus, H.B., 2002, Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling: Pure And Applied Geophysics, v. 159, no. 10, p. 2335–2356, doi: 10.1007/s00024-002-8738-3.

Moresi, L., Dufour, F., and Muhlhaus, H.B., 2003, A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials: Journal of Computational Physics, v. 184, no. 2, p. 476–497.

Moresi, L., Quenette, S., Lemiale, V., Mériaux, C., Appelbe, W., Mühlhaus, 2007, Computational approaches to studying non-linear dynamics of the crust and mantle: Phys. Earth Planet. Inter, v. 163, p. 69–82, doi: 10.1016/j.pepi.2007.06.009.

Geodynamics - mathematical background

The simplest template set of equations for solid-Earth dynamics cover mass, momentum and heat conservation in a highly viscous fluid allowing for additional effects due to elasticity and plasticity. The Stokes momentum equation neglects inertia but includes an additional term on the right hand side that represents stress history associated with an explicit treatment of viscoelasticity.[1] [2] [3]

\[\begin{equation}
 \tau_{ij,j} - p_{,i} = \rho\left(T, C, \cdots \right) - \tau^{\delta t}_{ij,j}
 \label{eq:stokes-momentum}
\end{equation}\]

\(\tau\) is the deviatoric stress, \(p\) represents the pressure, \(\rho\) is density, \(T\) is the temperature, \(C\) is a concentration intended to represent changes in composition.

At pressures in planetary interiors, silicate minerals are weakly compressible and this is generally considered as a perturbation to an incompressible flow ignoring bulk viscosity and only considering the long-term elastic resistance to volume change. For the purposes of explaining the formulation, the incompressible constraint equation on the velocity, \(u\) is sufficient.

\[\begin{equation}
 u_{i,i} = 0
 \label{eq:stokes-incompressibility}
\end{equation}\]

The thermal evolution of the system expresses the balance between heat transport by fluid motion, thermal diffusion and internal heat generation. Additional terms can be included to account for heating due to viscous dissipation, for example, but do not change the overall character of the conservation equation.

\[\begin{equation}
 T_{,t} - u_i T_{,i} = \left(\kappa T_{,i} \right)_{,i} + Q_T
 \label{eq:adv-diffusion-thermal}
\end{equation}\]

The most significant feature of this system is the spontaneous appearance of boundary layers where horizontal advection and vertical diffusion are approximately balanced. By contrast, compositional variations are characterised by a much smaller, usually negligible, rate of diffusion:

\[\begin{equation}
 C_{,t} - u_i C_{,i} = Q_C
 \label{eq:adv-compositional}
\end{equation}\]

The thermal and compositional variations couple to the momentum equation through their effect on density. The Boussinesq approximation [6], accounts for the buoyancy forces while neglecting the associated volume change allowing us to assume incompressibility. If the non-diffusive, compositional variation represents a smoothly varying concentration, then the density can be written as [4]

\[\begin{equation}
 \rho = \rho_0 (1-\alpha \Delta T) (1-\alpha_C \Delta C)
\end{equation}\]

In the case where C represents a state with discrete steps (e.g.a phase change or immiscible fluids), it is common to let \(\rho_0\) take discrete values and assume \(\alpha_C=0\).

The final requirement is a constitutive relationship for the momentum equation that links the stress to the velocity unknown. Rheology is one of the defining aspects of the dynamics of the mantle, particularly in the cooler parts of the upper boundary layer where elasticity, non-linearity, and brittle behaviour plays a significant role. A general constitutive law can be expressed as:

\[\begin{equation}
 \frac{\dot{\tau_{ij}} }{\mu} + \frac{\tau_{ij}}{\eta} +
 \lambda \Lambda_{ijkl} \tau_{kl} =
 \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}
 \label{eq:viscoelasticplastic-const-law}
\end{equation}\]

where \(\mu\) is the elastic shear modulus and \(\eta\) is the shear viscosity (both of which may vary with temperature and composition). \(\Lambda\) is a structural tensor that represents the orientation of the plastic deformation relative to the applied stress and \(\lambda\) is a scalar multiplier that is computed to satisfy the stress conditions at yield [5]. Typically, \(\eta\) varies by several tens of orders of magnitude over the typical temperature ranges expected between the Earth’s surface and interior. The orientation tensor and the yield stress are usually modelled to include a simple damage evolution that relates to the work expended in deforming the material at yield.

	[1]:

	Moresi, L. N., F. Dufour, and H. B. Muhlhaus (2002), Mantle convection modeling with viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling, Pure And Applied Geophysics, 159(10), 2335–2356, doi:10.1007/s00024-002-8738-3.

	[2]:

	Moresi, L. N., F. Dufour, and H. B. Muhlhaus (2003), A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, Journal of Computational Physics, 184(2), 476–497, doi:10.1016/S0021-9991(02)00031-1.

	[3]:

	Farrington, R. J., L. N. Moresi, and F. A. Capitanio (2014), The role of viscoelasticity in subducting plates, Geochemistry, Geophysics, Geosystems, 15(11), 4291–4304, doi:10.1002/2014GC005507.

	[4]:

	van Keken, P. E., S. D. King, H. Schmeling, U. R. Christensen, D. Neumeister, and M. P. Doin (1997), A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res., 102(B10), 22,477–22,495.

	[5]:

	
	Moresi, H. B. Muhlhaus, V. Lemiale, and D. A. May (2007), Incompressible viscous formulations for deformation and yielding of the lithosphere, Geological Society London Special Publications, 282(1), 457–472, doi:10.1144/SP282.19.

	[6]:

	Boussinesq, J. (1903), The ́orie analytique de la chaleur, Vol. 2, Gauthier-Villars, Paris (Reproduction Bibliothe ́que Nationale de France, 1995).

Numerical methods - background

Description

Underworld is a Lagrangian integration point finite element code. This is a modernization of the original particle-in-cell concept from the 1960s in which a structured mesh and an unstructured particle swarm co-exist. The mesh is used to solve diffusion-dominated parts of the problem and the particle swarm is used to track advected quantities. In the finite element context, the mapping from mesh to particles is through the usual basis functions of the elements and the mapping from particles to mesh is through the integration scheme used to build up the stiffness matrices etc.

The applications of the method are mainly in modelling of complex fluids where very large strains occur but the material also has a memory of the entire strain / strain-rate history. In geosciences this occurs due to the visco-elasticity of rocks at lithospheric temperature and their tendency to develop fabric (lattice preferred orientation and stress/strain-dependent grain size). Problems with material interfaces which undergo severe distortion during the deformation are also naturally handled by this method provided there is no slip on the interface.

Background

The method has been published in detail in Moresi et al (2002, 2003)[1]. These papers dealt exclusively with 2D applications but in recent years, we have introduced a number of improvements in the method to enable us to scale the problem to 3D. For example we developed a fast discrete Voronoi method to compute the integration weights of the particle-to-mesh mapping efficiently [2]. We have also concentrated on extremely robust solvers / preconditioners which are necessary because the material variations and geometrical complexity are both large and unpredictable at the start of the simulation.

The benefit of this approach is associated with the separation of the computational mesh from the swarm of points which track the history. This allows us to retain a much more structured computational mesh than the deformation / material history would otherwise allow. We can take full advantage of the most efficient geometrical multigrid solvers and there is no need to preserve structure during any remeshing operations we undertake (for example if we do need to track a free surface or an internal interface). Although there are several complexities introduced by enforcing this separation, we find that the benefits, for our particular class of problems, are significant.

Implementation and parallelism

Underworld is implemented using the StGermain framework . This provides the essential infrastructure to manage i/o, meshes, particle swarms, finite element operations, in a parallel (domain decomposition, message passing) environment. The numerical solvers are based around the PETSc software suite which focuses on delivering good parallel scalability. Good scalability results have been achieved for over 10000 core simulations.

	[1]:

	Moresi, L. N., F. Dufour, and H. B. Muhlhaus (2003), A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, Journal of Computational Physics, 184(2), 476–497, doi:10.1016/S0021-9991(02)00031-1.

	[2]:

	Velić, M., D. A. May, and L. N. Moresi (2009), A fast robust algorithm for computing discrete voronoi diagrams, Journal of Mathematical Modelling and …, doi:10.1007/s10852-008-9097-6.

	[3]

	
	Moresi, F. Dufour, and H. B. Muhlhaus. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal Of Computational Physics, 184:476–497, 2003.

Underworld Installation

Docker

Docker is a type of lightweight virtualisation, and is the preferred method for Underworld usage on personal computers. You will first need to install Docker on your system, and then you may install Underworld via Docker. Docker may be driven from the command line, but new users may wish to use the Docker Kitematic GUI instead for ease. Simply search for ‘underworldcode/underworld2’ within Kitematic, and then click ‘CREATE’ to launch a container. You will eventually wish to modify your container settings (again through Kitematic) to enable local folder volume mapping, which will allow you to access your local drives within your container.

For Linux users, and those who prefer the command line, the following minimal command should be sufficient to access the Underworld2 Jupyter Notebook examples:

docker run -p 8888:8888 underworldcode/underworld2

Navigate to localhost:8888 to see the notebooks. A number of useful commands are provided within the Underworld cheat-sheet.

Windows users should note that for Windows 10 Home you should install Docker Toolbox, while for Windows 10 Professional you should install Docker for Windows. The Docker Toolbox edition utilised VirtualBox for virtualisation, and therefore to access any running Jupyter servers you must browse to the virtual machine address (instead of localhost). To find the VM address, you will generally execute

docker-machine ip default

but note that this will only work correctly from the Docker Quickstart Terminal.

Native

For installation on HPC facilities and if you would like a native local build, you will need to download, install and compile the Underworld code and relevant dependencies. A native build can be difficult in non-standard environments and we are currently investigating HPC deployment of Docker containers.

For information on how to build, please refer to the top level COMPILE.md [https://github.com/underworldcode/underworld2/tree/master/COMPILE.md] file. Instructions for HPC builds may be found at docs/install_guides [https://github.com/underworldcode/underworld2/tree/master/docs/install_guides]. You may also find useful build related information at the Underworld blog pages [http://www.underworldcode.org/pages/Blog/].

User Guide

	Getting started

	The Mesh

	Swarms

	Functions

	Systems

	Utilities

	Visualisation

	Stokes Solver

Getting started

Welcome to using Underworld!

Underworld [http://www.underworldcode.org] is a Python library for
the development of long time scale earth process models. The Underworld
Python interface is designed to facilitate interactive and intuitive
model development. To this end, we embrace Jupyter Notebooks as the
preferred development environment, although the standard Python
interpreter is the only requirement. Underworld utilises MPI
parallelisation to allow large simulation across HPC facilities. The
Python interface was partly funded by the NeCTAR
eResearch_tools [http://www.nectar.org.au/eresearch-tools] program.

Underworld includes the glucifer package for interactive
visualisation within the Jupter Notebook environment, and for seamless
visualisation capabilities across parallel simulations. glucifer
leverages the LavaVu [https://github.com/OKaluza/LavaVu] engine for
rendering capabilities.

Resources

There are numerous resources that you might find useful for learning and
using Underworld:

	underworld2.readthedocs.io [http://underworld2.readthedocs.io]:
The page where most of our primary documentation is published,
including this user guide, and the API documentation. It also links
out to most other resources.

	github.com/underworldcode/underworld2 [https://github.com/underworldcode/underworld2]:
Our code repository. You can keep track of changes to the codes base
here, and you can also browse most of our documention directly within
the Github interface. Don’t forget to Star and Watch our
project if you find it useful!

	github.com/underworldcode/underworld2/issues [https://github.com/underworldcode/underworld2/issues]:
Please use our issue tracker to report any bugs or difficulties you
encounter. This includes any general usage questions as well as
technial issues. If you wish to submit a suspected bug, please
include a minimal example which allows us to reproduce the issue.
It is also the place to post any feature requests you may have!

	The User Guide: A more focused look at the various aspects of
Underworld modelling. Note that each section is a self container
Jupyter Notebook document, available in the Underworld repository
(docs/user_guide). It is also published at the Underworld
ReadTheDocs page.

	Examples: These notebooks go through the entire Underworld
workflow for constructing and solving geophysics models. These models
demonstrate Underworld current best usage practises, and are
guaranteed to operate correctly for each Underworld release. They are
available in the repository at docs/examples.

	API Documentation: The Underworld API documentation is published
at our ReadTheDocs page, along with the glucifer API documentation.
Note that the API documentation is embedded in the Python
implementation as docstrings, and is therefore also available
directy via the Python help() built-in. More usefully, this
information is accessible within Jupyter Notebooks via the tooltips
shortcut Shift-Tab (when in edit mode).

	Underworld Models
Library [https://github.com/underworldcode/model_library]: A
repository of Underworld models. The library includes models which
reproduce publication results, tutorials, examples and usage tidbits.
Note that these models are not explicitly maintained, and so may not
operate against the latest version of Underworld. If you scroll to
the end of each model, it should state which version of Underworld
the repository model was successfully ran against.

Required Python Skills

To use Underworld successfully, you will need to have an understanding
of the following Python constructs:

	Basic Python, such as importing modules, and syntax structure
(indenting, functions, etc).

	Containers such as dictionaries, lists and tuples.

	Flow control (loops, if-else conditionals, etc).

	Python objects, object methods, object attributes, object lifecycles.

Most beginner (or intermediate) Python tutorials should cover these
concepts. Also useful, though not strictly necessary, is some
familiarity with the following:

	Exception handling (for dealing with errors that might occur).

	Context managers (for mesh and swarm deformations).

	Operator overloading.

Note that Underworld heavily leverages the numpy Python numerical
library for all heavy data access and manipulation. All Underworld
objects that record heavy data will expose their data via the data
attribute, which is actually a handle to a numpy array. As such,
familiary with numpy usage paradigms is a must, and more advanced usage
patterns (array slicing, advanced indexing, etc) will become important
as your models increase in complexity.

Similarly, Underworld uses h5py for all heavy data disk IO. H5py is
a Python library which provides a Python interface to writing/reading
HDF5 format files. While not strictly required, more advanced users
will certainly find having some familiarity with the h5py libary
useful, both for directly querying files Underworld has generated, and
also for writing their own files (in preference to CSV for example).

Jupyter Notebooks

Jupyter Notebooks is the recommended environment for most model
development. In Underworld we utilise notebooks to provide inline
visualisation of your model configurations, allowing you to quickly see
your results, modify as required, and then regenerate and repeat.
Equally important is the tooltips and autocomplete functionality
provided within the notebooks. To access tooltips, use shift-tab
while you have the text editing cursor located within an Underworld
object (or you can write a question mark after the object, and execute
the cell). For autocomplete, after you type a few letters you can press
tab to be provided with all possible completion options. Using these
tools is essential to rapid and frustration free model development,
especially for new users.

If you are new to Jupyter Notebooks, you should familiarise yourself
with the notebook environment first. Also, remember the Help menu
bar option provides useful references and keyboard shortcuts.

How to get help

If you encounter issues or suspect a bug, please create a ticket using
the issue tracker on
github [https://github.com/underworldcode/underworld2/issues].

A quick demo

Let’s do a quick run through of setting up some basic Underworld
objects.

 The Mesh

The Mesh

The finite element mesh is a fundamental construct for Underworld
modelling. It will generally determine your domain geometry, and the
resolution of the finite element system. For parallel simulations, the
mesh topology will also determine the domain decomposition for the
problem. Currently underworld only provides curvilinear mesh
capabilities.

Overview:

	Creating mesh objects.

	Element types.

	Deforming the mesh.

	Loading and saving the mesh.

	Special sets.

	Mesh variables

	Setting values on a mesh variables.

	Gradients of mesh variable fields.

	Loading and saving mesh variable data.

Keywords: mesh variables, finite elements, load, save, initial
conditions

Creating the mesh

First create an 2x2 element mesh. By default the mesh will be of
rectangular geometry, with domain extents specified via the minCoord
and maxCoord constructor parameters.

 Swarms

Swarms

In Underworld, the swarm is an object that defines a collection of
particles. Swarms are usually used to track the Lagrangian quantities
required for a given model, such as a material type identifier, or the
plastic strain of an advecting parcel of fluid. Swarm may be used
passively to record information as they advect, or actively where the
values recorded on particles actually feed into rheologies or forces.

Swarms of particles may:

	Advect through the mesh according to a user specified velocity.

	Store arbitrary data on a per-particle basis.

	Freely cross process boundaries in parallel simulations.

The user is free to create as many swarms as required and each swarm may
contain an arbitrary number of particles. The data layout for any
given swarm is identical across all its particles, though different
swarms may have different layouts. For example, SwarmA may contain 100
particles, and each particle may encode an int and a float,
while SwarmB may contain 15 particles, each particle encoding three
float values. Particles may also be added to a swarm at any stage
either directly or through population control mechanisms. It is also
possible to delete particles, though currently this is only possible
through indirect means.

Overview

	Creating a swarm object and adding particles.

	Moving particles.

	Swarm variables.

	Shapes with particle swarms.

	Saving and loading swarms.

Keywords: swarms, particles, shapes.

Creating a swarm object and adding particles

Creating a swarm is very simple, but you will first require a mesh. The
mesh will inform the swarm of your model geometry. In particular, your
model domain is generally determined by the mesh, and particles may be
deleted if they leave the mesh. For parallel simulations, the mesh also
determines the problem partitioning across multiple processes, and
therefore the local process domain.

Note that your newly created swarm will be empty! It is just a container
for particles, and you will need to explicitly add particles. To add
particles, you will either use a layout object, or generate a numpy
array with the required particle coordinates.

 Functions

Functions

Function class objects provide the building blocks for mathematical
expression within Underworld2. The primary aim of this class is to
enable a natural description of mathematics through the Python syntax so
that users may quickly and accurately prototype model behaviour.

Functions are used extensively across the Underworld2 API and provide a
unified interface to Underworld2 discrete objects (SwarmVariable and
MeshVariable objects).

The user is encouraged to drill down interactively into the function
submodules to discover available functionality, or alternatively browse
the API reference reference at the underworld documentation
site [https://underworld2.readthedocs.io].

Overview:

	A simple example.

	Usage basics.

	Module overview.

	The evaluate() method.

	The input function.

	Branching functions.

Keywords: functions, swarms, meshvariables, materials

A Simple Example

Let us define a function which we might use as a variable heat
conductivity for a thermal problem. It will take the following
temperature dependent form:

\[k(\mathbf{x}) = 5 +8\exp({5T(\mathbf{x})})\]

 Systems

Systems

Numerous dynamic systems are implemented in Underworld. They may be
found within the systems submodule. For specific information on the
different system classes, the user is directed to the API reference
available at the Underworld documentation site:

http://underworld2.readthedocs.io/

We will consider here the basic workflow for creating and configuring an
Underworld numerical system. The general process is as follows:

	Create your mesh.

	Create any required field(s) on the mesh (such as a temperature
field).

	Create any required boundary condition objects.

	Create function objects to define any required physical quantities.

	Create system.

	Create solver and solve system.

Note that for systems that are solved many times (for perhaps
time-stepping), you will generally only create the system (and solver)
once, and then solve it numerous times.

Boundary Conditions

Boundary conditions form part of your known information for the system
you are creating. In Underworld, these knowns are either of the
Dirichlet (fixed value) or Neumann (fixed gradient) type, and are
applied on a per node and per degree of freedom (DOF) basis. Note
also that the entire domain boundary must be piecemeal either Dirichlet
or Neumann type, but no section of boundary can be both Dirichlet
and Neumann. Sections of the boundary that do not have any BCs
explicitly set by the user will implicitly be of Neumann type (with zero
gradient).

To give this discussion a mathematical grounding, let’s consider the
heat equation. The strong form of the boundary value problem is

\[\begin{split}\begin{align}
q_i =& - \alpha \, u_{,i} & \\
q_{i,i} =& \: f & \text{ in } \Omega \\
u =& \: g & \text{ on } \Gamma_g \\
-q_i n_i =& \: h & \text{ on } \Gamma_h \\
\end{align}\end{split}\]

where, \(\alpha\) is the diffusivity, \(u\) is the temperature,
\(f\) is a source term, \(g\) is the Dirichlet condition, and
\(h\) is a Neumann condition. The problem boundary, \(\Gamma\),
admits the decomposition \(\Gamma=\Gamma_g\cup\Gamma_h\) where
\(\emptyset=\Gamma_g\cap\Gamma_h\).

The Dirichlet Condition

The Dirichlet condition part of the problem specification requires that
our solution temperature \(u\) is equal to the user specified
function \(g\) across the user specified boundary \(\Gamma_g\).
In Underworld, the Dirichlet boundary \(\Gamma_g\) is specified
through the use of IndexSet objects. These objects simply contain
lists of mesh nodes (or rather the node indices) which the user wishes
to flag as boundary nodes. A number of commonly used IndexSet
objects are provided directly through the mesh object’s specialSets
dictionary:

 Utilities

Utilities

Overview:

	Integrals.

	Checkpointing.

	Generating XDMF files.

Keywords: checkpointing, utilities, volume integrals, surface
integrals, xdmf

Integral Class

The Integral class constructs the volume integral

\[F_{i} = \int_V \, f_i(\mathbf{x}) \, \mathrm{d} V\]

for some function \(f_i\) (specified by a Function object), over
some domain \(V\) (specified by an FeMesh object), or the
surface integral

\[F_{i} = \oint_{\Gamma} \, f_i(\mathbf{x}) \, \mathrm{d}\Gamma\]

for some surface \(\Gamma\) (specified via an IndexSet object on
the mesh).

 Visualisation

Visualisation

The glucifer module provides visualisation capabilities for Underworld
modelling. It provides a higher level interface to the rendering
capabilities provided by LavaVu [https://github.com/OKaluza/LavaVu],
but also performs all the required collation of parallel data back to
the root process, where it is then rendered.

	Creating figures.

	Drawing objects within figures.

	Saving figures to a file.

	Advanced figure control.

	The Interactive viewer

The Figure

The Figure class is the base container object for your glucifer
visualisations. It provides the canvas to which you will add the
renderings from your drawing objects. Use the show() method to
render your blank canvas:

 Stokes Solver

Stokes Solver

We want to solve the following Stokes block system.

\[\begin{split}\begin{bmatrix}
 K & G \\
 G^T & C
\end{bmatrix}
\begin{bmatrix}
 u\\
 p
\end{bmatrix}
=
\begin{bmatrix}
 f\\
 h
\end{bmatrix}.\end{split}\]

If we apply Gaussian elimination to the above as a 2x2 block matrix
system we can write this as:

\[\begin{split}\begin{bmatrix}
 K & G\\
 0 & S
\end{bmatrix}
\begin{bmatrix}
 u\\
 p
\end{bmatrix}
=
\begin{bmatrix}
 f\\
 \hat{h}
\end{bmatrix},\end{split}\]

where \(S=G^{T}K^{-1}G-C\) is the Schur complement and
\(\hat{h}=G^{T}K^{-1}f -h\).

This system is now solved first for the pressure using the Schur
complement matrix, \(S\). Then a backsolve for the velocity gives
the complete solution.

Note that wherever \(K^{-1}\) appears, the inverse is never
explicitly calculated but is achieved via a
PETSc [http://www.mcs.anl.gov/petsc/] solve method. While solving
for the pressure, there are necessarily solves using \(K\) inside of
the matrix \(S\). We often refer to these as ‘inner’ solves.

Basic usage of the Stokes solver class involves being able to easily set
up the inner solves in a few different ways (Setting up the pressure
solve is more advanced).

To illustrate some basic usage let’s set up a simple problem to solve.

 underworld module

underworld module

Underworld2 is a python-friendly version of the Underworld geodynamics
code which provides a programmable and flexible front end to all the
functionality of the code running in a parallel HPC environment. This
gives signficant advantages to the user, with access to the power of
python libraries for setup of complex problems, analysis at runtime,
problem steering, and coupling of multiple problems.

Underworld2 is integrated with the literate programming environment of
the jupyter notebook system for tutorials and as a teaching tool for
solid Earth geoscience.

Underworld is an open-source, particle-in-cell finite element code
tuned for large-scale geodynamics simulations. The numerical algorithms
allow the tracking of history information through the high-strain
deformation associated with fluid flow (for example, transport of the
stress tensor in a viscoelastic, convecting medium, or the advection of
fine-scale damage parameters by the large-scale flow). The finite
element mesh can be static or dynamic, but it is not contrained to move
in lock-step with the evolving geometry of the fluid. This hybrid approach
is very well suited to complex fluids which is how the solid Earth behaves
on a geological timescale.

Module Summary

submodules:

	underworld.function module

	underworld.container module

	underworld.utils module

	underworld.scaling module

	underworld.swarm module

	underworld.mesh module

	underworld.systems module

	underworld.timing module

	underworld.conditions module

functions:

	underworld.matplotlib_inline

	This function simply enables Jupyter Notebook inlined matplotlib results.

	underworld.nProcs

	Returns the number of processes being utilised by the simulation.

	underworld.rank

	Returns the rank of the current process.

	underworld.barrier

	Creates an MPI barrier.

Module Details

functions:

	
underworld.matplotlib_inline()

	This function simply enables Jupyter Notebook inlined matplotlib results.
This function should be called at the start of your notebooks as a
replacement for the Jupyter Notebook %matplotlib inline magic. It provides
the same functionality, however it allows notebooks to be converted to
python without having to explicitly remove these calls.

	
underworld.nProcs()

	Returns the number of processes being utilised by the simulation.

	Returns

	Number of processors.

	Return type

	unsigned

	
underworld.rank()

	Returns the rank of the current process.

	Returns

	Rank of current process.

	Return type

	unsigned

	
underworld.barrier()

	Creates an MPI barrier. All processes wait here for others to catch up.

 underworld.function module

underworld.function module

The function module contains the Function class, and related classes.

Function objects are constructed in python, but evaluated in C for
efficiency. They provide a high level interface for users to compose model
behaviour (such as viscosity), as well as a natural interface by which
discrete data (such as meshvariables) may be utilised.

Module Summary

submodules:

	underworld.function.branching module

	underworld.function.exception module

	underworld.function.tensor module

	underworld.function.misc module

	underworld.function.analytic module

	underworld.function.shape module

	underworld.function.rheology module

	underworld.function.math module

	underworld.function.view module

classes:

	underworld.function.Function

	Objects which inherit from this class provide user definable functions within Underworld.

	underworld.function.FunctionInput

	Objects that inherit from this class are able to act as inputs to function evaluation from python.

	underworld.function.coord

	alias of underworld.function._function.input

	underworld.function.input

	This class generates a function which simply passes through its input.

Module Details

classes:

	
class underworld.function.Function(argument_fns, **kwargs)

	Bases: underworld._stgermain.LeftOverParamsChecker

Objects which inherit from this class provide user definable functions
within Underworld.

Functions aim to achieve a number of goals:
* Provide a natural interface for mathematical behaviour description within python.
* Provide a high level interface to Underworld discrete objects.
* Allow discrete objects to be used in combination with continuous objects.
* Handle the evaluation of discrete objects in the most efficient manner.
* Perform all heavy calculations at the C-level for efficiency.
* Provide an interface for users to evaluate functions directly within python,
utilising numpy arrays for input/output.

	
__add__(other)

	Operator overloading for ‘+’ operation:

Fn3 = Fn1 + Fn2

Creates a new function Fn3 which performs additions of Fn1 and Fn2.

	Returns

	fn.add

	Return type

	Add function

Examples

>>> import misc
>>> import numpy as np
>>> three = misc.constant(3.)
>>> four = misc.constant(4.)
>>> np.allclose((three + four).evaluate(0.), [[7.]]) # note we can evaluate anywhere because it's a constant
True

	
__and__(other)

	Operator overloading for ‘&’ operation:

Fn3 = Fn1 & Fn2

Creates a new function Fn3 which returns a bool result for the operation.

	Returns

	fn.logical_and

	Return type

	AND function

Examples

>>> import misc
>>> trueFn = misc.constant(True)
>>> falseFn = misc.constant(False)
>>> (trueFn & falseFn).evaluate()
array([[False]], dtype=bool)

Notes

The ‘&’ operator in python is usually used for bitwise ‘and’ operations, with the
‘and’ operator used for boolean type operators. It is not possible to overload the
‘and’ operator in python, so instead the bitwise equivalent has been utilised.

	
__div__(other)

	Operator overloading for ‘/’ operation:

Fn3 = Fn1 / Fn2

Creates a new function Fn3 which returns the quotient of Fn1 and Fn2.

	Returns

	fn.divide

	Return type

	Divide function

Examples

>>> import misc
>>> import numpy as np
>>> two = misc.constant(2.)
>>> four = misc.constant(4.)
>>> np.allclose((four/two).evaluate(0.), [[2.]]) # note we can evaluate anywhere because it's a constant
True

	
__ge__(other)

	Operator overloading for ‘>=’ operation:

Fn3 = Fn1 >= Fn2

Creates a new function Fn3 which returns a bool result for the relation.

	Returns

	fn.greater_equal

	Return type

	Greater than or equal to function

Examples

>>> import misc
>>> import numpy as np
>>> two = misc.constant(2.)
>>> (two >= two).evaluate()
array([[True]], dtype=bool)

	
__getitem__(index)

	Operator overloading for ‘[]’ operation:

FnComponent = Fn[0]

Creates a new function FnComponent which returns the required component of Fn.

	Returns

	fn.at

	Return type

	component function

Examples

>>> import misc
>>> fn = misc.constant((2.,3.,4.))
>>> np.allclose(fn[1].evaluate(0.), [[3.]]) # note we can evaluate anywhere because it's a constant
True

	
__gt__(other)

	Operator overloading for ‘>’ operation:

Fn3 = Fn1 > Fn2

Creates a new function Fn3 which returns a bool result for the relation.

	Returns

	fn.greater

	Return type

	Greater than function

Examples

>>> import misc
>>> import numpy as np
>>> two = misc.constant(2.)
>>> four = misc.constant(4.)
>>> (two > four).evaluate()
array([[False]], dtype=bool)

	
__le__(other)

	Operator overloading for ‘<=’ operation:

Fn3 = Fn1 <= Fn2

Creates a new function Fn3 which returns a bool result for the relation.

	Returns

	fn.less_equal

	Return type

	Less than or equal to function

Examples

>>> import misc
>>> import numpy as np
>>> two = misc.constant(2.)
>>> (two <= two).evaluate()
array([[True]], dtype=bool)

	
__lt__(other)

	Operator overloading for ‘<’ operation:

Fn3 = Fn1 < Fn2

Creates a new function Fn3 which returns a bool result for the relation.

	Returns

	fn.less

	Return type

	Less than function

Examples

>>> import misc
>>> import numpy as np
>>> two = misc.constant(2.)
>>> four = misc.constant(4.)
>>> (two < four).evaluate()
array([[True]], dtype=bool)

	
__mul__(other)

	Operator overloading for ‘*’ operation:

Fn3 = Fn1 * Fn2

Creates a new function Fn3 which returns the product of Fn1 and Fn2.

	Returns

	fn.multiply

	Return type

	Multiply function

Examples

>>> import misc
>>> import numpy as np
>>> three = misc.constant(3.)
>>> four = misc.constant(4.)
>>> np.allclose((three*four).evaluate(0.), [[12.]]) # note we can evaluate anywhere because it's a constant
True

	
__neg__()

	Operator overloading for unary ‘-‘.

FnNeg = -Fn

Creates a new function FnNeg which is the negative of Fn.

	Returns

	fn.multiply

	Return type

	Negative function

Examples

>>> import misc
>>> import numpy as np
>>> four = misc.constant(4.)
>>> np.allclose((-four).evaluate(0.), [[-4.]]) # note we can evaluate anywhere because it's a constant
True

	
__or__(other)

	Operator overloading for ‘|’ operation:

Fn3 = Fn1 | Fn2

Creates a new function Fn3 which returns a bool result for the operation.

	Returns

	fn.logical_or

	Return type

	OR function

Examples

>>> import misc
>>> trueFn = misc.constant(True)
>>> falseFn = misc.constant(False)
>>> (trueFn | falseFn).evaluate()
array([[True]], dtype=bool)

Notes

The ‘|’ operator in python is usually used for bitwise ‘or’ operations,
with the ‘or’ operator used for boolean type operators. It is not possible
to overload the ‘or’ operator in python, so instead the bitwise equivalent
has been utilised.

	
__pow__(other)

	Operator overloading for ‘**’ operation:

Fn3 = Fn1 ** Fn2

Creates a new function Fn3 which returns Fn1 to the power of Fn2.

	Returns

	fn.math.pow

	Return type

	Power function

Examples

>>> import misc
>>> import numpy as np
>>> two = misc.constant(2.)
>>> four = misc.constant(4.)
>>> np.allclose((two**four).evaluate(0.), [[16.]]) # note we can evaluate anywhere because it's a constant
True

	
__radd__(other)

	Operator overloading for ‘+’ operation:

Fn3 = Fn1 + Fn2

Creates a new function Fn3 which performs additions of Fn1 and Fn2.

	Returns

	fn.add

	Return type

	Add function

Examples

>>> import misc
>>> import numpy as np
>>> three = misc.constant(3.)
>>> four = misc.constant(4.)
>>> np.allclose((three + four).evaluate(0.), [[7.]]) # note we can evaluate anywhere because it's a constant
True

	
__rmul__(other)

	Operator overloading for ‘*’ operation:

Fn3 = Fn1 * Fn2

Creates a new function Fn3 which returns the product of Fn1 and Fn2.

	Returns

	fn.multiply

	Return type

	Multiply function

Examples

>>> import misc
>>> import numpy as np
>>> three = misc.constant(3.)
>>> four = misc.constant(4.)
>>> np.allclose((three*four).evaluate(0.), [[12.]]) # note we can evaluate anywhere because it's a constant
True

	
__rsub__(other)

	Operator overloading for ‘-‘ operation. Right hand version.

Fn3 = Fn1 - Fn2

Creates a new function Fn3 which performs subtraction of Fn2 from Fn1.

	Returns

	fn.subtract

	Return type

	RHS subtract function

Examples

>>> import misc
>>> import numpy as np
>>> four = misc.constant(4.)
>>> np.allclose((5. - four).evaluate(0.), [[1.]]) # note we can evaluate anywhere because it's a constant
True

	
__sub__(other)

	Operator overloading for ‘-‘ operation:

Fn3 = Fn1 - Fn2

Creates a new function Fn3 which performs subtraction of Fn2 from Fn1.

	Returns

	fn.subtract

	Return type

	Subtract function

Examples

>>> import misc
>>> import numpy as np
>>> three = misc.constant(3.)
>>> four = misc.constant(4.)
>>> np.allclose((three - four).evaluate(0.), [[-1.]]) # note we can evaluate anywhere because it's a constant
True

	
__xor__(other)

	Operator overloading for ‘^’ operation:

Fn3 = Fn1 ^ Fn2

Creates a new function Fn3 which returns a bool result for the operation.

	Returns

	fn.logical_xor

	Return type

	XOR function

Examples

>>> import misc
>>> trueFn = misc.constant(True)
>>> falseFn = misc.constant(False)
>>> (trueFn ^ falseFn).evaluate()
array([[True]], dtype=bool)
>>> (trueFn ^ trueFn).evaluate()
array([[False]], dtype=bool)
>>> (falseFn ^ falseFn).evaluate()
array([[False]], dtype=bool)

Notes

The ‘^’ operator in python is usually used for bitwise ‘xor’ operations,
however here we always use the logical version, with the operation
inputs cast to their bool equivalents before the operation.

	
static convert(obj)

	This method will attempt to convert the provided input into an equivalent
underworld function. If the provided input is already of Function type,
it is immediately returned. Likewise, if the input is of None type, it is
also returned.

	Parameters

	obj (fn_like) – The object to be converted. Note that if obj is of type None or
Function, it is simply returned immediately.
Where obj is of type int/float/double, a Constant type function
is returned which evaluates to the provided object’s value.
Where obj is of type list/tuple, a function will be returned
which evaluates to a vector of the provided list/tuple’s values
(where possible).

	Returns

	

	Return type

	Fn.Function or None.

Examples

>>> import underworld as uw
>>> import underworld.function as fn

>>> fn_const = fn.Function.convert(3)
>>> fn_const.evaluate(0.) # eval anywhere for constant
array([[3]], dtype=int32)

>>> fn_const == fn.Function.convert(fn_const)
True

>>> fn.Function.convert(None)

>>> fn1 = fn.input()
>>> fn2 = 10.*fn.input()
>>> fn3 = 100.*fn.input()
>>> vec = (fn1,fn2,fn3)
>>> fn_vec = fn.Function.convert(vec)
>>> fn_vec.evaluate([3.])
array([[3., 30., 300.]])

	
evaluate(inputData=None, inputType=None)

	This method performs evaluate of a function at the given input(s).

It accepts floats, lists, tuples, numpy arrays, or any object which is of
class FunctionInput. lists/tuples must contain floats only.

FunctionInput class objects are shortcuts to their underlying data, often
with performance advantages, and sometimes they are the only valid input
type (such as using Swarm objects as an inputs to SwarmVariable
evaluation). Objects of class FeMesh, Swarm, FeMesh_IndexSet and
VoronoiIntegrationSwarm are also of class FunctionInput. See the
Function section of the user guide for more information.

Results are returned as numpy array.

	Parameters

	
	inputData (float, list, tuple, ndarray, underworld.function.FunctionInput) – The input to the function. The form of this input must be appropriate
for the function being evaluated, or an exception will be thrown.
Note that if no input is provided, function will be evaluated at 0.

	inputType (str) – Specifies the type the provided data represents. Acceptable
values are ‘scalar’, ‘vector’, ‘symmetrictensor’, ‘tensor’,
‘array’.

	Returns

	ndarray

	Return type

	array of results

Examples

>>> from . import _systemmath as math
>>> import underworld.function.math as fnmath
>>> sinfn = fnmath.sin()

Single evaluation:

>>> np.allclose(sinfn.evaluate(math.pi/4.), [[0.5*math.sqrt(2.)]])
True

Multiple evaluations

>>> input = (0.,math.pi/4.,2.*math.pi)
>>> np.allclose(sinfn.evaluate(input), [[0., 0.5*math.sqrt(2.), 0.]])
True

Single MeshVariable evaluations

>>> mesh = uw.mesh.FeMesh_Cartesian()
>>> var = uw.mesh.MeshVariable(mesh,1)
>>> import numpy as np
>>> var.data[:,0] = np.linspace(0,1,len(var.data))
>>> result = var.evaluate((0.2,0.5))
>>> np.allclose(result, np.array([[0.45]]))
True

Numpy input MeshVariable evaluation

>>> # evaluate at a set of locations.. provide these as a numpy array.
>>> count = 10
>>> # create an empty array
>>> locations = np.zeros((count,2))
>>> # specify evaluation coodinates
>>> locations[:,0] = 0.5
>>> locations[:,1] = np.linspace(0.,1.,count)
>>> # evaluate
>>> result = var.evaluate(locations)
>>> np.allclose(result, np.array([[0.08333333], [0.17592593], [0.26851852], [0.36111111], [0.4537037], [0.5462963], [0.63888889], [0.73148148], [0.82407407], [0.91666667]]))
True

Using the mesh object as a FunctionInput

>>> np.allclose(var.evaluate(mesh), var.evaluate(mesh.data))
True

	
evaluate_global(inputData, inputType=None)

	This method attempts to evalute inputData across all processes, and
then consolide the results on the root processor. This is most useful
where you wish to evalute your functions using global coordinates
which may span processes in a parallel simulation.

Note that this method does not currently support ‘FunctionInput’ class
input data.

Due to the communications required for this method, a significant
performance overhead may be encountered. The standard evaluate method
should be used instead wherever possible.

Please see evaluate method for parameter details.

Notes

This method must be called collectively by all processes.

	Returns

	
	Only the root process gets the final results array. All other processes

	are returned None.

	
integrate(mesh)

	Perform an integral of this underworld function over the given mesh

	Parameters

	mesh (uw.mesh.FeMesh_Cartesian) – Domain to perform integral over.

Examples

>>> mesh = uw.mesh.FeMesh_Cartesian(minCoord=(0.0,0.0), maxCoord=(1.0,2.0))
>>> fn_1 = uw.function.misc.constant(2.0)
>>> np.allclose(fn_1.integrate(mesh)[0], 4)
True

>>> fn_2 = uw.function.misc.constant(2.0) * (0.5, 1.0)
>>> np.allclose(fn_2.integrate(mesh), [2,4])
True

	
class underworld.function.FunctionInput(*args, **kwargs)

	Bases: underworld._stgermain.LeftOverParamsChecker

Objects that inherit from this class are able to act as inputs
to function evaluation from python.

	
underworld.function.coord

	alias of underworld.function._function.input

	
class underworld.function.input(*args, **kwargs)

	Bases: underworld.function._function.Function

This class generates a function which simply passes through its input. It
is the identity function. It is often useful when construct functions where
the input itself needs to be accessed, such as to extract a particular
component.

For example, you may wish to use this function when you wish to extract a
particular coordinate component for manipulation. For this reason, we also
provide an alias to this class called ‘coord’.

	Returns

	fn.input

	Return type

	the input function

Examples

Here we see the input function simply passing through its input.

>>> infunc = input()
>>> np.allclose(infunc.evaluate((1.,2.,3.)), [1., 2., 3.])
True

Often this behaviour is useful when we want to construct a function
which operates on only a particular coordinate, such as a depth
dependent density. We may wish to extract the z coordinate (in
2d):

>>> zcoord = input()[1]
>>> baseDensity = 1.
>>> density = baseDensity - 0.01*zcoord
>>> testCoord1 = (0.1,0.4)
>>> testCoord2 = (0.9,0.4)
>>> np.allclose(density.evaluate(testCoord1), density.evaluate(testCoord2))
True

 underworld.function.branching module

underworld.function.branching module

The branching module provides functions which provide branching behaviour.
Typically, these functions will select other user provided functions when
certain conditions are met (with the condition also described by a function!).

Module Summary

classes:

	underworld.function.branching.map

	This function performs a map to other functions.

	underworld.function.branching.conditional

	This function provides ‘if/elif’ type conditional behaviour.

Module Details

classes:

	
class underworld.function.branching.map(fn_key=None, mapping=None, fn_default=None, *args, **kwargs)

	Bases: underworld.function._function.Function

This function performs a map to other functions. The user provides a python
dictionary which maps unsigned integers keys to underworld functions. The
user must also provide a key function. At evaluation time, the key function
is evaluated first, with the outcome determining which function should
finally be evaluated to return a value.

For a set of value functions \(\{f_{v_0},f_{v_1},\ldots,f_{v_n}\}\),
corresponding keys \(\{k_0,k_1,\ldots,k_n\}\), and key function
\(f_{k}\), we have:

\[\begin{split}f(\mathbf{r})=
 \begin{cases}
 f_{v_0}(\mathbf{r}), & \text{if } f_{k}(\mathbf{r}) = k_0\\
 f_{v_1}(\mathbf{r}), & \text{if } f_{k}(\mathbf{r}) = k_1\\
 ... \\
 f_{v_n}(\mathbf{r}), & \text{if } f_{k}(\mathbf{r}) = k_n\\
 f_{d} (\mathbf{r}), & \text{otherwise}
 \end{cases}\end{split}\]

As stated, the keys must be unsigned integers. The key function need not
return an unsigned integer, but whatever value it returns will be cast
to an unsigned integer so caution is advised.

The default function is optional, but if none is provided, and the key
function evaluates to a value which is not within the user provide set of
keys, an exception will be thrown.

	Parameters

	
	fn_key (underworld.function.Function (or convertible)) – Function which returns integer key values. This function will be evaluated
first to determine which function from the mapping is to be used.

	mapping (dict(Function)) – Python dictionary providing a mapping from unsigned integer ‘key’ values to
underworld ‘value’ functions. Note that the provided ‘value’ functions must
return values of type ‘double’.

	fn_default (underworld.function.Function (or convertible) (optional)) – Default function to be utilised when the key (returned by fn_key function)
does not correspond to any key value in the mapping dictionary.

The following example sets different function behaviour inside and outside
of a unit sphere. The unit sphere is represented by particles which
record a swarm variable to determine if they are or not inside the sphere.

Example

Setup mesh, swarm, swarmvariable & populate

>>> import underworld as uw
>>> import underworld.function as fn
>>> import numpy as np
>>> mesh = uw.mesh.FeMesh_Cartesian(elementRes=(8,8),minCoord=(-1.0, -1.0), maxCoord=(1.0, 1.0))
>>> swarm = uw.swarm.Swarm(mesh)
>>> svar = swarm.add_variable("int",1)
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellSpaceFillerLayout(swarm,20))

For all particles in unit circle, set svar to 1

>>> svar.data[:] = 0
>>> for index, position in enumerate(swarm.particleCoordinates.data):
... if position[0]**2 + position[1]**2 < 1.:
... svar.data[index] = 1

Create a function which reports the value ‘1.’ inside the sphere, and
‘0.’ otherwise. Note that while we have only used constant value functions
here, you can use any object of the class Function.

>>> fn_map = fn.branching.map(fn_key=svar, mapping={0: 0., 1:1.})
>>> np.allclose(np.pi, uw.utils.Integral(fn_map,mesh).evaluate(),rtol=2e-2)
True

Alternatively, we could utilise the default function to achieve the same
result.

>>> fn_map = fn.branching.map(fn_key=svar, mapping={1: 1.}, fn_default=0.)
>>> np.allclose(np.pi, uw.utils.Integral(fn_map,mesh).evaluate(),rtol=2e-2)
True

	
class underworld.function.branching.conditional(clauses, *args, **kwargs)

	Bases: underworld.function._function.Function

This function provides ‘if/elif’ type conditional behaviour.

The user provides a list of tuples, with each tuple being of the
form (fn_condition, fn_resultant). Effectively, each tuple provides a clause
within the if/elif statement.

When evaluated, the function traverses the clauses, stopping at the first
fn_condition which returns ‘true’. It then executes the corresponding
fn_resultant and returns the results.

If none of the provided clauses return a ‘True’ result, an exception is
raised.

For a set of condition functions { fc_0, fc_1, … ,fc_n }, and
corresponding resultant functions { fr_0, fr_1, … ,fr_n },
we have for a provided input f_in:

if fc_0(f_in) :
 return fr_0(f_in)
elif fc_1(f_in) :
 return fr_1(f_in)
...
elif fc_n(f_in) :
 return fr_n(f_in)
else :
 raise RuntimeError("Reached end of conditional statement. At least one
 of the clause conditions must evaluate to 'True'.");

	Parameters

	clauses (list) – list of tuples, with each tuple being of the form (fn_condition, fn_resultant).

Example

The following example uses functions to represent a unit circle. Here a
conditional function report back the value ‘1.’ inside the sphere (as per
the first condition), and ‘0.’ otherwise.

>>> import underworld as uw
>>> import underworld.function as fn
>>> import numpy as np
>>> mesh = uw.mesh.FeMesh_Cartesian(elementRes=(16,16),minCoord=(-1.0, -1.0), maxCoord=(1.0, 1.0))
>>> circleFn = fn.coord()[0]**2 + fn.coord()[1]**2
>>> fn_conditional = fn.branching.conditional([(circleFn < 1., 1.), (True, 0.)])
>>> np.allclose(np.pi, uw.utils.Integral(fn_conditional,mesh).evaluate(),rtol=1e-2)
True

 underworld.function.exception module

underworld.function.exception module

This module provides functions which raise an exception when given conditions
are encountered during function evaluations. Exception functions never modify
query data.

Module Summary

classes:

	underworld.function.exception.CustomException

	This function allows you to set custom exceptions within your model.

	underworld.function.exception.SafeMaths

	This function checks if any of the following have been encountered during the evaluation of its argument function:

Module Details

classes:

	
class underworld.function.exception.CustomException(fn_input, fn_condition, fn_print=None, *args, **kwargs)

	Bases: underworld.function._function.Function

This function allows you to set custom exceptions within your model. You
must pass it two functions: the first function is the pass through function,
the second function is the required condition. You may also pass in a optional
third function whose output will be printed if the condition evaluates to False.

A CustomException function will perform the following logic:

	Evaluate the condition function.

	If it evaluates to False, an exception is thrown and the simulation
is halted. If a print function is provided, it will be evaluated
and its results will be included in the exception message.

	If it evaluates to True, the pass through function is evaluated
with the result then being return.

	Parameters

	
	fn_passthrough (underworld.function.Function) – The pass through function

	fn_condition (underworld.function.Function) – The condition function

	fn_print (underworld.function.Function) – The print function (optional).

Example

>>> import underworld as uw
>>> import underworld.function as fn
>>> one = fn.misc.constant(1.)
>>> passing_one = fn.exception.CustomException(one, (one < 2.))
>>> passing_one.evaluate()
array([[1.]])
>>> failing_one = fn.exception.CustomException(one, (one > 2.))
>>> failing_one.evaluate()
Traceback (most recent call last):
...
RuntimeError: Issue utilising function of class 'CustomException' constructed at:
 --- CONSTRUCTION TIME STACK ---
Error message:
CustomException condition function has evaluated to False for current input!

Now with printing

>>> failing_one_by_five = fn.exception.CustomException(one, (one*5. > 20.), one*5.)
>>> failing_one_by_five.evaluate()
Traceback (most recent call last):
...
RuntimeError: Issue utilising function of class 'CustomException' constructed at:
 --- CONSTRUCTION TIME STACK ---
Error message:
CustomException condition function has evaluated to False for current input!
Print function returns the following values (cast to double precision):
 (5)

	
class underworld.function.exception.SafeMaths(fn, *args, **kwargs)

	Bases: underworld.function._function.Function

This function checks if any of the following have been encountered during
the evaluation of its argument function:

	Divide by zero

	Invalid domain was used for evaluation

	Value overflow errors

	Value underflow errors

If any of the above are encountered, an exception is thrown at the conclusion
of the argument function evaluation.

	Parameters

	fn (underworld.function.Function) – The function that is subject to the testing.

Example

>>> import underworld as uw
>>> import underworld.function as fn
>>> one = fn.misc.constant(1.)
>>> zero = fn.misc.constant(0.)
>>> fn_dividebyzero = one/zero
>>> safedividebyzero = fn.exception.SafeMaths(fn_dividebyzero)
>>> safedividebyzero.evaluate()
Traceback (most recent call last):
 ...
RuntimeError: Issue utilising function of class 'SafeMaths' constructed at:
 --- CONSTRUCTION TIME STACK ---
Error message:
Floating point exception(s) encountered while evaluating SafeMaths argument function:
 Divide by zero

 underworld.function.tensor module

underworld.function.tensor module

This module provides functions relating to tensor operations.

All Underworld2 functions return 1d array type objects. For tensor objects,
the following convention is used:

Full tensors:

	2D:

	
\[\begin{split}\left[a_{00}, a_{01}, \\
 a_{10}, a_{11} \right]\end{split}\]

	3D:

	
\[\begin{split}\left[a_{00}, a_{01}, a_{02}, \\
 a_{10}, a_{11}, a_{12}, \\
 a_{20}, a_{21}, a_{22} \right]\end{split}\]

Symmetric tensors:

	2D:

	
\[\left[a_{00}, a_{11}, a_{01} \right]\]

	3D:

	
\[\left[a_{00}, a_{11}, a_{22}, a_{01}, a_{02}, a_{12} \right]\]

Module Summary

classes:

	underworld.function.tensor.symmetric

	This function calculates the symmetric part of a tensor and returns it as a symmetric tensor.

	underworld.function.tensor.deviatoric

	This function calculates the deviatoric stress tensor from the provided symmetric tensor.

	underworld.function.tensor.antisymmetric

	This function calculates the anti-symmetric part of a tensor, returning it as a tensor.

	underworld.function.tensor.second_invariant

	This function calculates the second invariant of (symmetric)tensor provided by the subject function.

Module Details

classes:

	
class underworld.function.tensor.symmetric(fn, *args, **kwargs)

	Bases: underworld.function._function.Function

This function calculates the symmetric part of a tensor and returns
it as a symmetric tensor. The function generated by this class returns
objects of type SymmetricTensorType.

\[v_{ij} = \tfrac{1}{2} (u_{ij} + u_{ji})\]

	Parameters

	fn (underworld.function.Function) – The function which provides the required tensor. This function
must return objects of type TensorType.

	
class underworld.function.tensor.deviatoric(fn, *args, **kwargs)

	Bases: underworld.function._function.Function

This function calculates the deviatoric stress tensor from the provided
symmetric tensor. The function generated by this class returns objects of
type SymmetricTensorType.

\[\tau_{ij} = \sigma_{ij} - \frac{\sigma_{kk}}{\delta_{ll}}\delta_{ij}\]

	Parameters

	fn (underworld.function.Function) – The function which provides the required stress symmetric tensor. This
function must return objects of type SymmetricTensorType.

	
class underworld.function.tensor.antisymmetric(fn, *args, **kwargs)

	Bases: underworld.function._function.Function

This function calculates the anti-symmetric part of a tensor, returning it
as a tensor. The function generated by this class returns objects of
type TensorType.

\[v_{ij} = \tfrac{1}{2} (u_{ij} - u_{ji})\]

	Parameters

	fn (underworld.function.Function) – The function which provides the required tensor. This function
must return objects of type TensorType.

	
class underworld.function.tensor.second_invariant(fn, *args, **kwargs)

	Bases: underworld.function._function.Function

This function calculates the second invariant of (symmetric)tensor provided
by the subject function. The function generated by this class returns
objects of type ScalarType.

\[u = \sqrt{ \tfrac{1}{2} u_{ij} u_{ij} }\]

	Parameters

	fn (underworld.function.Function) – The function which provides the required tensor. This function
must return objects of type TensorType or SymmetricTensorType.

 underworld.function.misc module

underworld.function.misc module

Miscellaneous functions.

Module Summary

classes:

	underworld.function.misc.max

	Returns the maximum of the results returned from its two argument function.

	underworld.function.misc.constant

	This function returns a constant value.

	underworld.function.misc.min

	Returns the minimum of the results returned from its two argument function.

Module Details

classes:

	
class underworld.function.misc.max(fn1, fn2, **kwargs)

	Bases: underworld.function._function.Function

Returns the maximum of the results returned from its two argument function.

	Parameters

	
	fn1 (underworld.function.Function) – First argument function. Function must return a float type.

	fn2 (underworld.function.Function) – Second argument function. Function must return a float type.

Example

>>> import underworld as uw
>>> import underworld.function as fn
>>> import numpy as np
>>> testpoints = np.array(([[0.0], [0.2], [0.4], [0.6], [0.8], [1.01], [1.2], [1.4], [1.6], [1.8], [2.0],]))

Create which return identical results via different paths:

>>> fn_x = fn.input()[0]
>>> fn_x_minus_one = fn_x - 1.
>>> fn_one_minus_x = 1. - fn_x

Here we use ‘max’ and ‘min’ functions:

>>> fn_max = fn.misc.max(fn_one_minus_x,fn_x_minus_one)
>>> fn_min = fn.misc.min(fn_one_minus_x,fn_x_minus_one)

Here we use the conditional functions:

>>> fn_conditional_max = fn.branching.conditional(((fn_x <= 1., fn_one_minus_x), (fn_x > 1., fn_x_minus_one)))
>>> fn_conditional_min = fn.branching.conditional(((fn_x >= 1., fn_one_minus_x), (fn_x < 1., fn_x_minus_one)))

They should return identical results:

>>> np.allclose(fn_max.evaluate(testpoints),fn_conditional_max.evaluate(testpoints))
True
>>> np.allclose(fn_min.evaluate(testpoints),fn_conditional_min.evaluate(testpoints))
True

	
class underworld.function.misc.constant(value, *args, **kwargs)

	Bases: underworld.function._function.Function

This function returns a constant value.

	Parameters

	value (int,float,bool, iterable) – The value the function should return. Note that iterable objects
which contain valid types are permitted, but must be homogeneous
in their type.

Example

>>> import underworld as uw
>>> import underworld.function as fn
>>> fn_const = fn.misc.constant(3)
>>> fn_const.evaluate(0.) # eval anywhere for constant
array([[3]], dtype=int32)
>>> fn_const = fn.misc.constant((3,2,1))
>>> fn_const.evaluate(0.) # eval anywhere for constant
array([[3, 2, 1]], dtype=int32)
>>> fn_const = fn.misc.constant(3.)
>>> fn_const.evaluate(0.) # eval anywhere for constant
array([[3.]])
>>> fn_const = fn.misc.constant((3.,2.,1.))
>>> fn_const.evaluate(0.) # eval anywhere for constant
array([[3., 2., 1.]])
>>> fn_const = fn.misc.constant(True)
>>> fn_const.evaluate(0.) # eval anywhere for constant
array([[True]], dtype=bool)
>>> fn_const = fn.misc.constant((True,False,True))
>>> fn_const.evaluate(0.) # eval anywhere for constant
array([[True, False, True]], dtype=bool)

	
value

	constant value this function returns

	Type

	value

	
class underworld.function.misc.min(fn1, fn2, **kwargs)

	Bases: underworld.function._function.Function

Returns the minimum of the results returned from its two argument function.

	Parameters

	
	fn1 (underworld.function.Function) – First argument function. Function must return a float type.

	fn2 (underworld.function.Function) – Second argument function. Function must return a float type.

Example

See the example provided for ‘max’ function.

 underworld.function.analytic module

underworld.function.analytic module

This module provides a suite of models which satisfy the
Stokes system of equations.

All models are considered across a unit square (or cube)
domain, and utilise (unless otherwise stated) free-slip
conditions on all boundaries.

Each model object provides a set of Underworld Functions
for description of physical quantities such as velocity,
pressure and viscosity.

For numerical validation in Underworld, we construct a
Stokes system with appropriate domain and boundary
conditions. Viscosity and body forces are set directly
using corresponding Functions provided by the solution
object. Generated numerical solution for velocity and
pressure (or derivated quantities) may then be compared
with exact solutions provided by solution objects.

Module Summary

classes:

	underworld.function.analytic.SolDB3d

	SolDB2d and solDB3d from:

	underworld.function.analytic.SolM

	

	underworld.function.analytic.SolH

	Density step profile in (x,y).

	underworld.function.analytic.SolCx

	Viscosity step profile in x, trigonometric density profile.

	underworld.function.analytic.SolB

	Trigonometric/hyperbolic body forcing.

	underworld.function.analytic.SolC

	Discontinuous body forcing.

	underworld.function.analytic.SolDA

	Columnar density profile in x, and viscosity step in z.

	underworld.function.analytic.SolA

	Trigonometric body forcing.

	underworld.function.analytic.SolKz

	The boundary conditions are free-slip everywhere on a unit domain.

	underworld.function.analytic.SolDB2d

	SolDB2d and solDB3d from:

	underworld.function.analytic.SolKx

	The boundary conditions are free-slip everywhere on a unit domain.

	underworld.function.analytic.SolNL

	SolNL requires tighter solver tolerances and/or a direct solve for best results.

Module Details

classes:

	
class underworld.function.analytic.SolDB3d(Beta=4.0, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFixedBc

SolDB2d and solDB3d from:

Dohrmann, C.R., Bochev, P.B., A stabilized finite element method for the
Stokes problem based on polynomial pressure projections,
Int. J. Numer. Meth. Fluids 46, 183-201 (2004).

	
class underworld.function.analytic.SolM(eta_0=1.0, n_x=1, n_z=1, r=1.5, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

	
class underworld.function.analytic.SolH(sigma_0=1.0, x_c=0.5, y_c=0.5, eta_0=1.0, nmodes=30, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

Density step profile in (x,y). Constant viscosity.

	Parameters

	
	sigma_0 (float) – Perturbation strength factor.

	x_c (float) – Step position (in x).

	y_c (float) – Step position (in y).

	eta_0 (float) – Viscosity.

	nmodes (int) – Number of Fourier modes used when evaluating
analytic solution.

	
class underworld.function.analytic.SolCx(n_x=1, eta_A=1.0, eta_B=100000.0, x_c=0.75, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

Viscosity step profile in x, trigonometric density profile.

	Parameters

	
	n_x (unsigned) – Wavenumber parameter (in x).

	eta_A (float) – Viscosity of region A.

	eta_B (float) – Viscosity of region B.

	eta_c (float) – Viscosity step location.

	
class underworld.function.analytic.SolB(sigma_0=1.0, n_x=1, n_z=1.5, eta_0=1.0, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

Trigonometric/hyperbolic body forcing. Isoviscous.

	Parameters

	
	sigma_0 (float) – Perturbation strength factor.

	n_x (int) – Wavenumber parameter (in x).

	n_z (float) – Wavenumber parameter (in z).

	eta_0 (float) – Viscosity.

	
class underworld.function.analytic.SolC(sigma_0=1.0, x_c=0.5, eta_0=1.0, nmodes=200, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

Discontinuous body forcing. Isoviscous.

	Parameters

	
	sigma_0 (float) – Perturbation strength factor.

	x_c (float) – Perturbation step location.

	eta_0 (float) – Viscosity.

	nmodes (int) – Number of Fourier modes used when evaluating
analytic solution.

Notes

This solution is quiet slow to evaluate due to large number of
Fourier terms required. Number of terms is hard code in solC.c.

	
class underworld.function.analytic.SolDA(sigma_0=1.0, x_c=0.375, x_w=0.25, eta_A=1.0, eta_B=10.0, z_c=0.75, nmodes=200, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

Columnar density profile in x, and viscosity step in z.

	Parameters

	
	sigma_0 (float) – Perturbation strength factor.

	x_c (float) – Centre of column.

	x_w (float) – Width of column.

	eta_A (float) – Viscosity of region A.

	eta_B (float) – Viscosity of region B.

	z_c (float) – Viscosity step location.

	nmodes (int) – Number of Fourier modes used when evaluating
analytic solution.

	
class underworld.function.analytic.SolA(sigma_0=1.0, n_x=1, n_z=1.0, eta_0=1.0, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

Trigonometric body forcing. Isoviscous.

	Parameters

	
	sigma_0 (float) – Perturbation strength factor.

	n_x (int) – Wavenumber parameter (in x).

	n_z (float) – Wavenumber parameter (in z).

	eta_0 (float) – Viscosity.

	
class underworld.function.analytic.SolKz(sigma_0=1.0, n_x=1, n_z=1.0, B=1.1512925465, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

The boundary conditions are free-slip everywhere on a unit domain. The
viscosity varies exponentially in the z direction and is given by
\(\eta = \exp (2 B z)\). The flow is driven by the following
density perturbation:

	Parameters

	
	sigma_0 (float) – Perturbation strength factor.

	n_x (int) – Wavenumber parameter (in x).

	n_z (float) – Wavenumber parameter (in z).

	B (float) – Viscosity parameter.

	
class underworld.function.analytic.SolDB2d(*args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFixedBc

SolDB2d and solDB3d from:

Dohrmann, C.R., Bochev, P.B., A stabilized finite element method for the
Stokes problem based on polynomial pressure projections,
Int. J. Numer. Meth. Fluids 46, 183-201 (2004).

Check get_bcs() for BC setup.

	
class underworld.function.analytic.SolKx(sigma_0=1.0, n_x=1, n_z=1.0, B=1.1512925465, *args, **kwargs)

	Bases: underworld.function.analytic._SolBaseFreeSlipBc

The boundary conditions are free-slip everywhere on a unit domain. The
viscosity varies exponentially in the x direction and is given by
\(\eta = \exp (2 B x)\). The flow is driven by the following density
perturbation:

	Parameters

	
	sigma_0 (float) – Perturbation strength factor.

	n_x (int) – Wavenumber parameter (in x).

	n_z (float) – Wavenumber parameter (in z).

	B (float) – Viscosity parameter.

	
class underworld.function.analytic.SolNL(eta_0=1.0, n_z=1, r=1.5, *args, **kwargs)

	Bases: underworld.function.analytic._SolBase

SolNL requires tighter solver tolerances and/or a direct solve for best results.
Need to check in with Caesar Dandenonensis as to the origins of this solution.

Check get_bcs() for BC setup.

	
get_bcs(velVar)

	(Fixed,Fixed) conditions left/right.
(Free, Fixed) conditions top/bottom.

All fixed DOFs set to analytic soln values.

	Parameters

	velVar (underworld.mesh.MeshVariable) – The velocity variable is required to construct the BC
object.

	Returns

	The BC object. It should be passed in to the system being constructed.

	Return type

	underworld.conditions.SystemCondition

 underworld.function.shape module

underworld.function.shape module

This module includes shape type functions. Shape functions generally
define some geometric object, and return boolean values to indicate
whether the queried locations are inside or outside the shape.

Module Summary

classes:

	underworld.function.shape.Polygon

	This function creates a polygon shape.

Module Details

classes:

	
class underworld.function.shape.Polygon(vertices, fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

This function creates a polygon shape. Note that this is
strictly a 2d shape, and the third dimension of any query
will be ignored. You may create a box type function if you
wish to limit the shape extent in the third dimension.

You will need to use rotations to orient the polygon in
other directions. Rotations functions will be available
shortly (hopefully!).

	Parameters

	
	vertices (np.ndarray) – This array provides the vertices for the polygon.
Note that the order of the vertices is important. The polygon
is defined by a piecewise linear edge joining the vertices
in the order provided by the array. The final vertex and the
initial vertex are joined to complete the polygon.

	fn (underworld.function.Function, default=None) – This is the input function. Generally it will not be
required, but you may need to use (for example) to
transform the incoming coordinates.

Example

In this example we will create a triangle shape and test some
points.

>>> import underworld as uw
>>> import numpy as np

Create the array to define the triangle, and the function

>>> vertex_array = np.array([(0.0,0.0),(0.5,1.0),(1.0,0.0)])
>>> polyfn = uw.function.shape.Polygon(vertex_array)

Create some test points, and do a test evaluation

>>> test_array = np.array([(0.0,0.9),(0.5,0.5),(0.9,0.2)])
>>> polyfn.evaluate(test_array)
array([[False],
 [True],
 [False]], dtype=bool)

 underworld.function.rheology module

underworld.function.rheology module

This module contains functions relating to rheological operations.

Module Summary

classes:

	underworld.function.rheology.stress_limiting_viscosity

	Returns a viscosity value which effectively limits the maximum fluid stress.

Module Details

classes:

	
class underworld.function.rheology.stress_limiting_viscosity(fn_stress, fn_stresslimit, fn_inputviscosity, *args, **kwargs)

	Bases: underworld.function._function.Function

Returns a viscosity value which effectively limits the maximum fluid
stress. Where the stress invariant (as calculated using the provided
fn_stress) is greater than the stress limit (as provided by the
fn_stresslimit), the returned viscosity will affect a fluid stress
at the stress limit. Otherwise, fn_inputviscosity is passed through.

	Parameters

	
	fn_stress (underworld.function.Function) – Function which returns the current stress in the fluid.
Function should return a symmetric tensor of floating point values.

	fn_stresslimit (underworld.function.Function) – Function which defines the stress limit.
Function should return a scalar floating point value.

	fn_inputviscosity (underworld.function.Function) – Function which defines the non-yielded viscosity value.
Function should return a scalar floating point value.

Example

Lets setup a simple shear type configuration but with a viscosity
that increase vertically:

>>> import underworld as uw
>>> import underworld.function as fn
>>> mesh = uw.mesh.FeMesh_Cartesian(elementRes=(16,16), periodic=(True,False))
>>> velVar = uw.mesh.MeshVariable(mesh,2)
>>> pressVar = uw.mesh.MeshVariable(mesh.subMesh,1)

Simple shear boundary conditions:

>>> bot_nodes = mesh.specialSets["MinJ_VertexSet"]
>>> top_nodes = mesh.specialSets["MaxJ_VertexSet"]
>>> bc = uw.conditions.DirichletCondition(velVar, (top_nodes+bot_nodes,top_nodes+bot_nodes))
>>> velVar.data[bot_nodes.data] = (-0.5,0.)
>>> velVar.data[top_nodes.data] = (0.5,0.)

Vertically increasing exponential viscosity:

>>> fn_visc = 1.
>>> stokesSys = uw.systems.Stokes(velVar,pressVar,fn_visc,conditions=[bc,])

Solve:

>>> solver = uw.systems.Solver(stokesSys)
>>> solver.solve()

Use the min_max function to determine a maximum stress:

>>> fn_stress = 2.*fn_visc*uw.function.tensor.symmetric(velVar.fn_gradient)
>>> fn_minmax_inv = fn.view.min_max(fn.tensor.second_invariant(fn_stress))
>>> ignore = fn_minmax_inv.evaluate(mesh)
>>> import numpy as np
>>> np.allclose(fn_minmax_inv.max_global(), 1.0, rtol=1e-05)
True

Now lets set the limited viscosity. Note that the system is now non-linear.

>>> fn_visc_limited = fn.rheology.stress_limiting_viscosity(fn_stress,0.5,fn_visc)
>>> stokesSys.fn_viscosity = fn_visc_limited
>>> solver.solve(nonLinearIterate=True)

Now check the stress:

>>> fn_stress = 2.*fn_visc_limited*uw.function.tensor.symmetric(velVar.fn_gradient)
>>> fn_minmax_inv = fn.view.min_max(fn.tensor.second_invariant(fn_stress))
>>> ignore = fn_minmax_inv.evaluate(mesh)
>>> np.allclose(fn_minmax_inv.max_global(), 0.5, rtol=1e-05)
True

 underworld.function.math module

underworld.function.math module

This module provides math functions. All functions take functions (or
convertibles) as arguments. These functions effectively wrap to the
c++ standard template library equivalent. For example,
the ‘exp’ class generates a function with uses std::exp(double).

All functions operate on and return ‘double’ type data (or
‘float’ from python).

Module Summary

classes:

	underworld.function.math.pow

	Power function.

	underworld.function.math.cosh

	Computes the hyperbolic cosine of its argument function.

	underworld.function.math.acosh

	Computes the inverse hyperbolic cosine of its argument function.

	underworld.function.math.tan

	Computes the tangent of its argument function (measured in radians).

	underworld.function.math.asin

	Computes the principal value of the arc sine of x, expressed in radians.

	underworld.function.math.log

	Computes the natural logarithm of its argument function.

	underworld.function.math.atanh

	Computes the inverse hyperbolic tangent of its argument function.

	underworld.function.math.sqrt

	Computes the square root of its argument function.

	underworld.function.math.abs

	Computes the absolute value of its argument function.

	underworld.function.math.log10

	Computes the base 10 logarithm of its argument function.

	underworld.function.math.sin

	Computes the sine of its argument function (measured in radians).

	underworld.function.math.asinh

	Computes the inverse hyperbolic sine of its argument function.

	underworld.function.math.log2

	Computes the base 2 logarithm of its argument function.

	underworld.function.math.atan

	Computes the principal value of the arc tangent of x, expressed in radians.

	underworld.function.math.sinh

	Computes the hyperbolic sine of its argument function.

	underworld.function.math.cos

	Computes the cosine of its argument function (measured in radians).

	underworld.function.math.tanh

	Computes the hyperbolic tangent of its argument function.

	underworld.function.math.erf

	Computes the error function of its argument function.

	underworld.function.math.erfc

	Computes the complementary error function of its argument function.

	underworld.function.math.exp

	Computes the exponent of its argument function.

	underworld.function.math.acos

	Computes the principal value of the arc cosine of x, expressed in radians.

	underworld.function.math.dot

	Dot product function.

Module Details

classes:

	
class underworld.function.math.pow(fn1, fn2, **kwargs)

	Bases: underworld.function._function.Function

Power function. Raises fn1 to the power of fn2.

	Parameters

	
	fn1 (underworld.function.Function (or convertible)) – The base function.

	fn2 (underworld.function.Function (or convertible)) – The power function.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = pow(_uw.function.input(),3.)
>>> np.allclose(func.evaluate(2.), math.pow(2.,3.))
True

	
class underworld.function.math.cosh(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the hyperbolic cosine of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = cosh()
>>> np.allclose(func.evaluate(0.1234), math.cosh(0.1234))
True

	
class underworld.function.math.acosh(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the inverse hyperbolic cosine of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = acosh()
>>> np.allclose(func.evaluate(5.1234), math.acosh(5.1234))
True

	
class underworld.function.math.tan(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the tangent of its argument function
(measured in radians).

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = tan()
>>> np.allclose(func.evaluate(0.1234), math.tan(0.1234))
True

	
class underworld.function.math.asin(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the principal value of the arc sine of x, expressed in radians.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = asin()
>>> np.allclose(func.evaluate(0.1234), math.asin(0.1234))
True

	
class underworld.function.math.log(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the natural logarithm of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = log()
>>> np.allclose(func.evaluate(0.1234), math.log(0.1234))
True

	
class underworld.function.math.atanh(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the inverse hyperbolic tangent of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = atanh()
>>> np.allclose(func.evaluate(0.1234), math.atanh(0.1234))
True

	
class underworld.function.math.sqrt(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the square root of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = sqrt()
>>> np.allclose(func.evaluate(0.1234), math.sqrt(0.1234))
True

	
class underworld.function.math.abs(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the absolute value of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = abs()
>>> np.allclose(func.evaluate(-0.1234), math.fabs(0.1234))
True

	
class underworld.function.math.log10(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the base 10 logarithm of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = log10()
>>> np.allclose(func.evaluate(0.1234), math.log10(0.1234))
True

	
class underworld.function.math.sin(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the sine of its argument function
(measured in radians).

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = sin()
>>> np.allclose(func.evaluate(0.1234), math.sin(0.1234))
True

	
class underworld.function.math.asinh(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the inverse hyperbolic sine of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = asinh()
>>> np.allclose(func.evaluate(5.1234), math.asinh(5.1234))
True

	
class underworld.function.math.log2(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the base 2 logarithm of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = log2()
>>> np.allclose(func.evaluate(0.1234), math.log(0.1234,2))
True

	
class underworld.function.math.atan(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the principal value of the arc tangent of x, expressed in radians.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = atan()
>>> np.allclose(func.evaluate(0.1234), math.atan(0.1234))
True

	
class underworld.function.math.sinh(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the hyperbolic sine of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = sinh()
>>> np.allclose(func.evaluate(0.1234), math.sinh(0.1234))
True

	
class underworld.function.math.cos(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the cosine of its argument function
(measured in radians).

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = cos()
>>> np.allclose(func.evaluate(0.1234), math.cos(0.1234))
True

	
class underworld.function.math.tanh(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the hyperbolic tangent of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = tanh()
>>> np.allclose(func.evaluate(0.1234), math.tanh(0.1234))
True

	
class underworld.function.math.erf(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the error function of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = erf()
>>> np.allclose(func.evaluate(0.1234), math.erf(0.1234))
True

	
class underworld.function.math.erfc(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the complementary error function of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = erfc()
>>> np.allclose(func.evaluate(0.1234), math.erfc(0.1234))
True

	
class underworld.function.math.exp(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the exponent of its argument function.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = exp()
>>> np.allclose(func.evaluate(0.1234), math.exp(0.1234))
True

	
class underworld.function.math.acos(fn=None, *args, **kwargs)

	Bases: underworld.function._function.Function

Computes the principal value of the arc cosine of x, expressed in radians.

	Parameters

	fn (underworld.function.Function (or convertible)) – Optionally provided for function composition.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> func = acos()
>>> np.allclose(func.evaluate(0.1234), math.acos(0.1234))
True

	
class underworld.function.math.dot(fn1, fn2, **kwargs)

	Bases: underworld.function._function.Function

Dot product function. Returns fn1.fn2. Argument functions must return values
of identical size.

	Parameters

	
	fn1 (underworld.function.Function (or convertible)) – Argument function 1.

	fn2 (underworld.function.Function (or convertible)) – Argument function 2.

Example

>>> from . import _systemmath as math
>>> import numpy as np
>>> input1 = (2.,3.,4.)
>>> input2 = (5.,6.,7.)
>>> func = dot(input1, input2)

The function is constant, so evaluate anywhere:

>>> np.allclose(func.evaluate(0.), np.dot(input1,input2))
True

 underworld.function.view module

underworld.function.view module

This module includes functions which provide views into the results of
function queries. These functions never modify query data.

Module Summary

classes:

	underworld.function.view.min_max

	This function records the min & max result from a queried function.

Module Details

classes:

	
class underworld.function.view.min_max(fn, fn_norm=None, fn_auxiliary=None, *args, **kwargs)

	Bases: underworld.function._function.Function

This function records the min & max result from a queried function.

Note that this function simply records the min/max values encountered
when it is evaluated. Therefore, if it has not been evaluated at all,
the values returned via one of its methods (‘min_local’,
‘min_global’, etc) will simply be initialisation values.

For vector input types, this function will report on the magnitude
of the vector.

	Parameters

	
	fn (underworld.function.Function) – The primary function. If fn_norm is not provided, this is
used to calculate the min_max. Results from this function are
always passed back.

	fn_norm (underworld.function.Function) – This function returns a norm like quantity by which the
min and max are determined. For example, where the primary
function is a vector quantity, this function might calculate
the magnitude of that vector. This function must return a
scalar result, and must be provided where the primary function
is non-scalar. See the example below for usage.

	fn_auxiliary (underworld.function.Function) – An auxiliary function which is evaluated at the location
of the min/max. For example, often the coordinate where the
min/max values occur are required, and so the user may
pass in fn.input() as the auxiliary function to achieve this

Example

Create a simple function which returns two times its input:

>>> import underworld as uw
>>> import underworld.function as fn
>>> import numpy as np
>>> fn_simple = fn.input()[0]*2.

Let’s wrap it with a min_max function:

>>> fn_minmax_simple = fn.view.min_max(fn_simple)

Now do an evaluation:

>>> fn_minmax_simple.evaluate(5.)
array([[10.]])

Since there’s only been one evaluation, min and max
values should be identical:

>>> fn_minmax_simple.min_global()
10.0
>>> fn_minmax_simple.max_global()
10.0

Do another evaluation:

>>> fn_minmax_simple.evaluate(-3.)
array([[-6.]])

Now check min and max again:

>>> fn_minmax_simple.min_global()
-6.0
>>> fn_minmax_simple.max_global()
10.0

Note that if we only evaluate the subject function,
no min/max values are recorded:

>>> fn_simple.evaluate(3000.)
array([[6000.]])
>>> fn_minmax_simple.max_global()
10.0

Also note that for vector valued subject function, fn_norm
must be provided:

>>> fn_vec = fn.input()*(1.,1.)
>>> fn_vec_mm = fn.view.min_max(fn_vec)
>>> fn_vec_mm.evaluate(2.)
Traceback (most recent call last):
...
RuntimeError: Issue utilising function of class 'min_max' constructed at:
 --- CONSTRUCTION TIME STACK ---
Error message:
Argument function does not return scalar results. You must also provide a function which calculates the required norm like quantity via the `fn_norm` parameter.

>>> fn_vec_mm = fn.view.min_max(fn_vec, fn_norm=fn.math.dot(fn_vec,fn_vec))
>>> fn_vec_mm.evaluate(2.)
array([[2., 2.]])
>>> fn_vec_mm.max_global()
8.0
>>> fn_vec_mm.evaluate(-1.)
array([[-1., -1.]])
>>> fn_vec_mm.min_global()
2.0
>>> fn_vec_mm.max_global()
8.0

To obtain the min/max values across a MeshVariable object,
you will need to evaluate the function across all nodes of
the MeshVariable:

>>> mesh = uw.mesh.FeMesh_Cartesian()
>>> meshvariable = uw.mesh.MeshVariable(mesh, 1)
>>> meshvariable.data[:] = np.random.randint(100,size=meshvariable.data.shape) # init with random data
>>> fn_mv = fn.view.min_max(meshvariable) # create min_max view wrapper
>>> ignore = fn_mv.evaluate(mesh) # this call will evaluate at all nodes
>>> np.allclose(fn_mv.min_local(),meshvariable.data.min())
True
>>> np.allclose(fn_mv.max_local(),meshvariable.data.max())
True

Note that when operating in parallel, the min_global() and
max_global() methods are a good option for extracting
discrete object global min/max values, as the numpy views will
only report the local min/max values.

Also note that since min_max views only record results as they
are evaluated, if the underlying subject function min/max values
change, this will not be recorded by the min_max view until its
evaluate encounters the new min/max values:

>>> meshvariable.data[3] = 1000 # change some random value
>>> np.allclose(fn_mv.max_local(),meshvariable.data.max()) # check again, it should be false
False
>>> ignore = fn_mv.evaluate(mesh) # evaluate across all nodes again
>>> np.allclose(fn_mv.max_local(),meshvariable.data.max()) # check again
True

Similarly, the view’s min/max values are only updated when
smaller/larger min/max values are encountered. So, if the underlying
subject function’s maximum (for example) is reduced, the
view will not record this if its currently stored value exceeds
the new maximum. A call to reset() is required:

>>> fn_mv.max_local()
1000.0
>>> meshvariable.data[3] = 500 # reduce max
>>> ignore = fn_mv.evaluate(mesh) # evaluate across all nodes again
>>> fn_mv.max_local() # note that it still records old value
1000.0
>>> fn_mv.reset() # now re-init view's min/max
>>> ignore = fn_mv.evaluate(mesh) # evaluate across all nodes again
>>> fn_mv.max_local() # it should now record new value
500.0

The auxiliary function allows you to obtain secondary information at the function
minimum. One common use case would be to obtain a location where the min/max was obtained:

>>> fn_mv = fn.view.min_max(meshvariable, fn_auxiliary=fn.input())
>>> meshvariable.data[1] = 1000.0 # set second node to have the highest value
>>> ignore = fn_mv.evaluate(mesh)
>>> fn_mv.max_global()
1000.0
>>> np.allclose(mesh.data[1], fn_mv.max_global_auxiliary()) # ensure max is obtain at required mesh node.
True

	
max_global()

	Returns the maximum value encountered across all processes.

Notes

This method must be called by collectively all processes.

	Returns

	double

	Return type

	maximum value

	
max_global_auxiliary()

	Returns the results of the auxiliary function evaluated at the
location corresponding to the primary function maximum. This
method considers results across all processes (ie, globally).

Notes

This method must be called by collectively all processes.

	Returns

	FunctionIO

	Return type

	value at global maximum.

	
max_local()

	Returns the max value encountered locally on the current process.

	Returns

	double

	Return type

	maximum value

	
max_local_auxiliary()

	Returns the results of the auxiliary function evaluated at the
location corresponding to the primary function maximum. This
method only considers results on the current process.

	Returns

	FunctionIO

	Return type

	value at local maximum.

	
max_rank()

	Returns the rank where the maximum occurs. Note that this method
will return -1 until max_global has been called.

	Returns

	int

	Return type

	rank

	
min_global()

	Returns the minimum value encountered across all processes.

Notes

This method must be called by collectively all processes.

	Returns

	double

	Return type

	minimum value

	
min_global_auxiliary()

	Returns the results of the auxiliary function evaluated at the
location corresponding to the primary function minimum. This
method considers results across all processes (ie, globally).

Notes

This method must be called by collectively all processes.

	Returns

	FunctionIO

	Return type

	value at global minimum.

	
min_local()

	Returns the minimum value encountered locally on the current process.

	Returns

	double

	Return type

	minimum value

	
min_local_auxiliary()

	Returns the results of the auxiliary function evaluated at the
location corresponding to the primary function minimum. This
method only considers results on the current process.

	Returns

	FunctionIO

	Return type

	value at local minimum.

	
min_rank()

	Returns the rank where the minimum occurs. Note that this method
will return -1 until min_global has been called.

	Returns

	int

	Return type

	rank

	
reset()

	Resets the minimum and maximum values.

 underworld.container module

underworld.container module

Implementation relating to container objects.

Module Summary

classes:

	underworld.container.IndexSet

	The IndexSet class provides a set type container for integer values.

	underworld.container.ObjectifiedIndexSet

	This class simply adds an object to IndexSet data.

Module Details

classes:

	
class underworld.container.IndexSet(size, fromObject=None)

	Bases: object

The IndexSet class provides a set type container for integer values.
The underlying implementation is designed for memory efficiency.
Index insertion and removal is a constant time operation.

	Parameters

	
	size (int) – The size of the IndexSet. Note that the size corresponds to the maximum index
value (plus 1) the set is required to hold, NOT the number of elements in
the set. See IndexSet.size docstring for more information.

	fromObject (iterable, array_like, IndexSet. Optional.) – If provided, an IndexSet will be constructed using provided object’s data.
See ‘add’ method for more details on acceptable objects.
If not provided, empty set is generated.

Examples

You can add items via the constructor:

>>> someSet = uw.container.IndexSet(15, [3,14,2])
>>> someSet
IndexSet([2, 3, 14])

Alternatively, create an empty set and add items as necessary:

>>> someSet = uw.container.IndexSet(15)
>>> someSet
IndexSet([])
>>> someSet.add(3)
>>> someSet
IndexSet([3])
>>> someSet.add([2,11])
>>> someSet
IndexSet([2, 3, 11])

Python operators are overloaded for convenience. Check class method details
for full details.

	
AND(indices)

	Logical AND operation performed with provided IndexSet.

	Parameters

	indices (IndexSet) – IndexSet for which AND operation is performed. Note that provided set must be of type IndexSet.

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1.AND(someSet2)
>>> someSet1
IndexSet([9])

	
__add__(other)

	Operator overloading for C = A + B

Creates a new set C, then adds indices from A and B.

	Returns

	indexSet – The new set (C).

	Return type

	IndexSet

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 + someSet2
IndexSet([1, 3, 9, 10, 12])

	
__and__(other)

	Operator overloading for C = A & B

Creates a new set C, then adds indices from A, and performs
AND logic with B.

	Returns

	indexSet – The new set (C).

	Return type

	IndexSet

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 & someSet2
IndexSet([9])

	
__contains__(index)

	Check if item is in IndexSet.

	Parameters

	index (unsigned int) – Check if index is in IndexSet.

	Returns

	inSet – True if item is in set, False otherwise.

	Return type

	bool

Example

>>> someSet = uw.container.IndexSet(15, [3,9,10])
>>> 3 in someSet
True

	
__deepcopy__(memo)

	Custom deepcopy routine required because python won’t know how to copy
memory owned by stgermain.

	
__iadd__(other)

	Operator overloading for A += B

Adds indices from A and B.

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 += someSet2
>>> someSet1
IndexSet([1, 3, 9, 10, 12])

	
__iand__(other)

	Operator overloading for A &= B

Performs logical AND operation with A and B. Results are stored
in A.

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 &= someSet2
>>> someSet1
IndexSet([9])

	
__ior__(other)

	Operator overloading for A |= B

Performs logical OR operation with A and B. Results are stored in A.

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 |= someSet2
>>> someSet1
IndexSet([1, 3, 9, 10, 12])

	
__isub__(other)

	Operator overloading for A -= B

Removes from A indices in B.

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 -= someSet2
>>> someSet1
IndexSet([3, 10])

	
__len__()

	Overload for Python len usage.

	Returns

	int – Returns the total number of members this set contains.

	Return type

	member count

Example

>>> someSet = uw.container.IndexSet(15, [3,9,10])
>>> len(someSet)
3

	
__or__(other)

	Operator overloading for C = A | B

Creates a new set C, then adds indices from A, and performs OR
logic with B.

	Returns

	indexSet – The new set (C).

	Return type

	IndexSet

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 | someSet2
IndexSet([1, 3, 9, 10, 12])

	
__sub__(other)

	Operator overloading for C = A - B

Creates a new set C, then adds indices from A, and removes those
from B.

	Returns

	indexSet – The new set (C).

	Return type

	IndexSet

Example

>>> someSet1 = uw.container.IndexSet(15, [3,9,10])
>>> someSet2 = uw.container.IndexSet(15, [1,9,12])
>>> someSet1 - someSet2
IndexSet([3, 10])

	
add(indices)

	Add item(s) to IndexSet.

	Parameters

	indices (unsigned int, ndarray, IndexSet, iterable object.) – Index or indices to be added to the IndexSet. Ensure value(s) are integer
and non-negative. An iterable object may also be provided, with numpy arrays
and IndexSets being significantly more efficient.

Example

Create an empty set and add items as necessary:

>>> someSet = uw.container.IndexSet(15)
>>> someSet.add(3)
>>> someSet
IndexSet([3])
>>> 3 in someSet
True
>>> someSet.add([5,3,7,8])
>>> someSet
IndexSet([3, 5, 7, 8])
>>> someSet.add(np.array([10,11,3]))
>>> someSet
IndexSet([3, 5, 7, 8, 10, 11])

	
addAll()

	Set all indices of set to added.

Example

>>> someSet = uw.container.IndexSet(5)
>>> someSet
IndexSet([])
>>> someSet.addAll()
>>> someSet
IndexSet([0, 1, 2, 3, 4])

	
clear()

	Clear set. ie, set all indices to not included.

Example

>>> someSet = uw.container.IndexSet(5, [1,2,3])
>>> someSet
IndexSet([1, 2, 3])
>>> someSet.clear()
>>> someSet
IndexSet([])

	
data

	Returns the set members as a numpy array.

Note that only a numpy copy of the set is returned, and modifying this
array is disabled (and would have no effect).

	Returns

	Array containing IndexSet members.

	Return type

	numpy.ndarray (uint32)

Example

>>> someSet = uw.container.IndexSet(15, [3,9,10])
>>> someSet.data
array([3, 9, 10], dtype=uint32)

	
invert()

	Inverts the index set in place.

Example

>>> someSet = uw.container.IndexSet(15, [1,3,5,7,9,11,13])
>>> someSet.invert()
>>> someSet
IndexSet([0, 2, 4, 6, 8, 10, 12, 14])

	
remove(indices)

	Remove item(s) from IndexSet.

	Parameters

	indices (unsigned int, ndarray, iterable object) – Index or indices to be removed from the IndexSet. Ensure value(s) are integer
and non-negative. An iterable object may also be provided, with numpy arrays
being significantly more efficient. Note that the ‘remove’ method can not
be provided with an IndexSet object, as the ‘add’ object can.

Example

>>> someSet = uw.container.IndexSet(15, [3,9,10])
>>> someSet
IndexSet([3, 9, 10])
>>> someSet.remove(3)
>>> 3 in someSet
False
>>> someSet
IndexSet([9, 10])
>>> someSet.remove([9,10])
>>> someSet
IndexSet([])

	
size

	The size of the IndexSet. Note that the size corresponds to the maximum index
value (plus 1) the set is required to hold, NOT the number of elements in
the set. So for example, a size of 16, would result in an IndexSet which can
retain values between 0 and 15 (inclusive). Note also that the the IndexSet
will require (size/8 + 1) bytes of memory storage.

	
class underworld.container.ObjectifiedIndexSet(object=None, *args, **kwargs)

	Bases: underworld.container._indexset.IndexSet

This class simply adds an object to IndexSet data. Usually this object will be
the object for which the IndexSet data relates to.. For example, we can attach a
Mesh object to an IndexSet containing mesh vertices.

	
__init__(object=None, *args, **kwargs)

	Class initialiser

	Parameters

	
	object (any, default=None) – Object to tether to data

	parent classes for further parameters. (See) –

	Returns

	objectifiedIndexSet

	Return type

	ObjectifiedIndexSet

	
object

	Object for which IndexSet data relates.

 underworld.utils module

underworld.utils module

Various utility classes & functions.

Module Summary

functions:

	underworld.utils.is_kernel

	Function to determine if the script is being run in an ipython or jupyter notebook or in a regular python interpreter.

classes:

	underworld.utils.SavedFileData

	A class used to define saved data.

	underworld.utils.Integral

	The Integral class constructs the volume integral

	underworld.utils.MeshVariable_Projection

	This class provides functionality for projecting data from any underworld function onto a provided mesh variable.

Module Details

functions:

	
underworld.utils.is_kernel()

	Function to determine if the script is being run in an ipython or jupyter
notebook or in a regular python interpreter.

Return true if in ipython or Jupyter notebook, False otherwise.

classes:

	
class underworld.utils.SavedFileData(pyobj, filename)

	Bases: object

A class used to define saved data.

	Parameters

	
	pyobj (object) – python object saved data relates to.

	filename (str) – filename for saved data, full path

	
class underworld.utils.Integral(fn, mesh=None, integrationType='volume', surfaceIndexSet=None, integrationSwarm=None, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

The Integral class constructs the volume integral

\[F_{i} = \int_V \, f_i(\mathbf{x}) \, \mathrm{d} V\]

for some function \(f_i\) (specified by a Function object), over some domain
\(V\) (specified by an FeMesh object), or the surface integral

\[F_{i} = \oint_{\Gamma} \, f_i(\mathbf{x}) \, \mathrm{d}\Gamma\]

for some surface \(\Gamma\) (specified via an IndexSet object on the mesh).

	Parameters

	
	fn (uw.function.Function) – Function to be integrated.

	mesh (uw.mesh.FeMesh) – The mesh over which integration is performed.

	integrationType (str) – Type of integration to perform. Options are “volume” or “surface”.

	surfaceIndexSet (uw.mesh.FeMesh_IndexSet) – Must be provided where integrationType is “surface”.
This IndexSet determines which surface is to be integrated over.
Note that surface integration over interior nodes is not currently supported.

	integrationSwarm (uw.swarm.IntegrationSwarm (optional)) – User provided integration swarm.

Notes

Constructor must be called by collectively all processes.

Example

Calculate volume of mesh:

>>> import underworld as uw
>>> mesh = uw.mesh.FeMesh_Cartesian(minCoord=(0.,0.), maxCoord=(1.,1.))
>>> volumeIntegral = uw.utils.Integral(fn=1.,mesh=mesh)
>>> np.allclose(1., volumeIntegral.evaluate(), rtol=1e-8)
True

Calculate surface area of mesh:

>>> surfaceIntegral = uw.utils.Integral(fn=1., mesh=mesh, integrationType='surface', surfaceIndexSet=mesh.specialSets["AllWalls_VertexSet"])
>>> np.allclose(4., surfaceIntegral.evaluate(), rtol=1e-8)
True

	
evaluate()

	Perform integration.

Notes

Method must be called collectively by all processes.

	Returns

	result – Integration result. For vector integrals, a vector is returned.

	Return type

	list of floats

	
maskFn

	The integration mask used where surface integration is performed.

	
class underworld.utils.MeshVariable_Projection(meshVariable=None, fn=None, voronoi_swarm=None, type=0, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

This class provides functionality for projecting data
from any underworld function onto a provided mesh variable.

For the variable \(\bf{U} = \bf{u}_a N_a\) and function \(F\),
we wish to determine appropriate values for \(\bf{u}_a\) such
that \(\bf{U} \simeq F\).

Two projection methods are supported; weighted averages and weighted
residuals. Generally speaking, weighted averages provide robust low
order results, while weighted residuals give higher accuracy but
spurious results for difficult functions \(F\).

The weighted average method is defined as:

\[\bf{u}_a = \frac{\int_{\Omega} \bf{F} N_a \partial\Omega }{\int_{\Omega} N_a \partial\Omega }\]

The weighted residual method constructs an SLE which is then solved to
determine the unknowns:

\[\bf{u}_a\int_{\Omega} N_a N_b \partial\Omega = \int_{\Omega} \bf{F} N_b \partial\Omega\]

	Parameters

	
	meshVariable (underworld.mesh.MeshVariable) – The variable you wish to project the function onto.

	fn (underworld.function.Function) – The function you wish to project.

	voronoi_swarm (underworld.swarm.Swarm) – Optional. If a voronoi_swarm is provided, voronoi type integration is
utilised to integrate across elements. The provided swarm is used as the
basis for the voronoi integration. If no swarm is provided, Gauss
integration is used.

	type (int, default=0) – Projection type. 0:weighted average, 1:weighted residual

Notes

Constructor must be called collectively by all processes.

Examples

>>> import underworld as uw
>>> import numpy as np
>>> mesh = uw.mesh.FeMesh_Cartesian()
>>> U = uw.mesh.MeshVariable(mesh, 1)

Lets cast a constant value onto this mesh variable

>>> const = 1.23456
>>> projector = uw.utils.MeshVariable_Projection(U, const, type=0)
>>> np.allclose(U.data, const)
False
>>> projector.solve()
>>> np.allclose(U.data, const)
True

Now cast mesh coordinates onto a vector variable

>>> U_coord = uw.mesh.MeshVariable(mesh, 2)
>>> projector = uw.utils.MeshVariable_Projection(U_coord, uw.function.coord(), type=1)
>>> projector.solve()
>>> np.allclose(U_coord.data, mesh.data)
True

Project one mesh variable onto another

>>> U_copy = uw.mesh.MeshVariable(mesh, 2)
>>> projector = uw.utils.MeshVariable_Projection(U_copy, U_coord, type=1)
>>> projector.solve()
>>> np.allclose(U_copy.data, U_coord.data)
True

Project the coords to the submesh (usually the constant mesh)

>>> U_submesh = uw.mesh.MeshVariable(mesh.subMesh, 2)
>>> projector = uw.utils.MeshVariable_Projection(U_submesh, U_coord, type=1)
>>> projector.solve()
>>> np.allclose(U_submesh.data, mesh.subMesh.data)
True

Create swarm, then project particle owning elements onto mesh

>>> U_submesh = uw.mesh.MeshVariable(mesh.subMesh, 1)
>>> swarm = uw.swarm.Swarm(mesh)
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellSpaceFillerLayout(swarm,4))
>>> projector = uw.utils.MeshVariable_Projection(U_submesh, swarm.owningCell, type=1)
>>> projector.solve()
>>> np.allclose(U_submesh.data, mesh.data_elgId)
True

 underworld.scaling module

underworld.scaling module

The scaling module provides units and scaling capabilities.

Module Summary

functions:

	underworld.scaling.non_dimensionalise

	Non-dimensionalize (scale) provided quantity.

	underworld.scaling.dimensionalise

	Dimensionalise a value.

	underworld.scaling.get_coefficients

	Returns the global scaling dictionary.

Module Details

functions:

	
underworld.scaling.non_dimensionalise(dimValue)

	Non-dimensionalize (scale) provided quantity.

This function uses pint to perform a dimension analysis and
return a value scaled according to a set of scaling coefficients.

	Parameters

	dimValue (pint quantity) –

	Returns

	
	float (The scaled value.)

	Example

	——–

	>>> import underworld as uw

	>>> u = uw.scaling.units

	>>> # Characteristic values of the system

	>>> half_rate = 0.5 * u.centimeter / u.year

	>>> model_height = 600e3 * u.meter

	>>> refViscosity = 1e24 * u.pascal * u.second

	>>> surfaceTemp = 0. * u.kelvin

	>>> baseModelTemp = 1330. * u.kelvin

	>>> baseCrustTemp = 550. * u.kelvin

	>>> KL_meters = model_height

	>>> KT_seconds = KL_meters / half_rate

	>>> KM_kilograms = refViscosity * KL_meters * KT_seconds

	>>> Kt_degrees = (baseModelTemp - surfaceTemp)

	>>> K_substance = 1. * u.mole

	>>> scaling_coefficients = uw.scaling.get_coefficients()

	>>> scaling_coefficients[“[time]”] = KT_seconds

	>>> scaling_coefficients[“[length]”] = KL_meters

	>>> scaling_coefficients[“[mass]”] = KM_kilograms

	>>> scaling_coefficients[“[temperature]”] = Kt_degrees

	>>> scaling_coefficients[“[substance]”] -= K_substance

	>>> # Get a scaled value

	>>> gravity = uw.scaling.non_dimensionalise(9.81 * u.meter / u.second**2)

	
underworld.scaling.dimensionalise(value, units)

	Dimensionalise a value.

	Parameters

	
	value (float, int) – The value to be assigned units.

	units (pint units) – The units to be assigned.

	Returns

	pint quantity

	Return type

	dimensionalised value.

Example

>>> import underworld as uw
>>> A = uw.scaling.dimensionalise(1.0, u.metre)

	
underworld.scaling.get_coefficients()

	Returns the global scaling dictionary.

 underworld.swarm module

underworld.swarm module

This module contains routines relating to swarm type objects.

Module Summary

submodules:

	underworld.swarm.layouts module

classes:

	underworld.swarm.PopulationControl

	This class implements swarm population control mechanism.

	underworld.swarm.SwarmVariable

	The SwarmVariable class allows users to add data to swarm particles. The data

	underworld.swarm.GaussIntegrationSwarm

	Integration swarm which creates particles within an element at the Gauss points.

	underworld.swarm.VoronoiIntegrationSwarm

	Class for an IntegrationSwarm that maps to another Swarm

	underworld.swarm.Swarm

	The Swarm class supports particle like data structures.

	underworld.swarm.IntegrationSwarm

	Abstract class definition for IntegrationSwarms.

	underworld.swarm.GaussBorderIntegrationSwarm

	Integration swarm which creates particles within the boundary faces of an element, at the Gauss points.

	underworld.swarm.SwarmAbstract

	The SwarmAbstract class supports particle like data structures.

Module Details

classes:

	
class underworld.swarm.PopulationControl(swarm, deleteThreshold=0.006, splitThreshold=0.25, maxDeletions=0, maxSplits=3, aggressive=False, aggressiveThreshold=0.8, particlesPerCell=None, **kwargs)

	Bases: underworld._stgermain.LeftOverParamsChecker

This class implements swarm population control mechanism. Population control
acts on a per element basic, with a discrete voronoi algorithm is used to
determine where particles should be added or removed.

	Parameters

	
	swarm (underworld.swarm.Swarm) – The swarm for which population control should occur.

	deleteThreshold (float) – Particle volume fraction threshold below which particle is deleted.
i.e if (particleVolume/elementVolume)<deleteThreshold, then the
particle is deleted.

	splitThreshold (float) – Particle volume fraction threshold above which particle is split.
i.e if (particleVolume/elementVolume)>splitThreshold, then the
particle is split.

	maxDeletions (int) – maximum number of particle deletions per cell

	maxSplits (int) – maximum number of particles splits per cell

	aggressive (bool) – When enabled, this option will invoke aggressive population control
in elements where particle counts drop below some threshold.

	aggressiveThreshold (float) – lower cell particle population threshold beyond which aggressive
population control occurs.
i.e if (cellParticleCount/particlesPerCell)<aggressiveThreshold, then
aggressive pop control will occur.
Note that this option is only valid if ‘aggressive’ is enabled.

	particlesPerCell (int) – This is the desired number of particles each element should contain.
Note that this option is only valid if ‘aggressive’ is enabled.

Example

This simple example generates a swarm, then applies population control
to split particles.

>>> import underworld as uw
>>> import numpy as np
>>> mesh = uw.mesh.FeMesh_Cartesian()
>>> swarm = uw.swarm.Swarm(mesh)
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,4))
>>> population_control = uw.swarm.PopulationControl(swarm,deleteThreshold=0.,splitThreshold=0.,maxDeletions=0,maxSplits=9999)
>>> population_control.repopulate()
>>> swarm.particleGlobalCount
512

	
repopulate()

	This method repopulates the swarm.

	
class underworld.swarm.SwarmVariable(swarm, dataType, count, writeable=True, **kwargs)

	Bases: underworld._stgermain.StgClass, underworld.function._function.Function

	The SwarmVariable class allows users to add data to swarm particles. The data

	can be of type “char”, “short”, “int”, “long, “float” or “double”.

Note that the swarm allocates one block of contiguous memory for all the particles.
The per particle variable datums is then interlaced across this memory block.

The recommended practise is to add all swarm variables before populating the swarm
to avoid costly reallocations.

Swarm variables should be added via the add_variable swarm method.

	Parameters

	
	swarm (underworld.swarm.Swarm) – The swarm of particles for which we wish to add the variable

	dataType (str) – The data type for the variable. Available types are “char”,
“short”, “int”, “long”, “float” or “double”.

	count (unsigned) – The number of values to be stored for each particle.

	writeable (bool) – Signifies if the variable should be writeable.

	
count

	
	Returns

	Number of data items for this variable stored on each particle.

	Return type

	int

	
data

	
	Returns

	Numpy proxy array to underlying variable data. Note that the
returned array is a proxy for all the local particle data. As
numpy arrays are simply proxys to the underlying memory structures,
no data copying is required.

	Return type

	numpy.ndarray

Example

>>> # create mesh
>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> # create empty swarm
>>> swarm = uw.swarm.Swarm(mesh)
>>> # add a variable
>>> svar = swarm.add_variable("int",1)
>>> # add particles
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,2))
>>> swarm.particleLocalCount
1024
>>> len(svar.data) # should be the same as particle local count
1024
>>> swarm.owningCell.data # check particle owning cells/elements.
array([[0],
 [0],
 [0],
 ...,
 [255],
 [255],
 [255]], dtype=int32)

>>> # particle coords
>>> swarm.particleCoordinates.data[0]
array([0.0132078, 0.0132078])
>>> # move the particle
>>> with swarm.deform_swarm():
... swarm.particleCoordinates.data[0] = [0.2,0.2]
>>> swarm.particleCoordinates.data[0]
array([0.2, 0.2])

	
dataType

	
	Returns

	Data type for variable. Supported types are ‘char’, ‘short’, ‘int’, ‘long’,
‘float’ and ‘double’.

	Return type

	str

	
data_shadow

	
	Returns

	Numpy proxy array to underlying variable shadow data.

	Return type

	numpy.ndarray

Example

Refer to example provided for ‘data’ property(/method).

	
load(filename)

	Load the swarm variable from disk. This must be called after the swarm.load().

	Parameters

	filename (str) – The filename for the saved file. Relative or absolute paths may be
used, but all directories must exist.

Notes

This method must be called collectively by all processes.

Example

Refer to example provided for ‘save’ method.

	
save(filename)

	Save the swarm variable to disk.

	Parameters

	
	filename (str) – The filename for the saved file. Relative or absolute paths may be
used, but all directories must exist.

	swarmHandle (uw.utils.SavedFileData , optional) – The saved swarm file handle. If provided, a reference to the swarm file
is made. Currently this doesn’t provide any extra functionality.

	Returns

	Data object relating to saved file. This only needs to be retained
if you wish to create XDMF files and can be ignored otherwise.

	Return type

	underworld.utils.SavedFileData

Notes

This method must be called collectively by all processes.

Example

First create the swarm, populate, then add a variable:

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,2))
>>> svar = swarm.add_variable("int",1)

Write something to variable

>>> import numpy as np
>>> svar.data[:,0] = np.arange(swarm.particleLocalCount)

Save to a file:

>>> ignoreMe = swarm.save("saved_swarm.h5")
>>> ignoreMe = svar.save("saved_swarm_variable.h5")

Now let’s try and reload. First create a new swarm and swarm variable,
and then load both:

>>> clone_swarm = uw.swarm.Swarm(mesh)
>>> clone_svar = clone_swarm.add_variable("int",1)
>>> clone_swarm.load("saved_swarm.h5")
>>> clone_svar.load("saved_swarm_variable.h5")

Now check for equality:

>>> import numpy as np
>>> np.allclose(svar.data,clone_svar.data)
True

>>> # clean up:
>>> if uw.rank() == 0:
... import os;
... os.remove("saved_swarm.h5")
... os.remove("saved_swarm_variable.h5")

	
swarm

	
	Returns

	The swarm this variable belongs to.

	Return type

	underworld.swarm.Swarm

	
xdmf(filename, varSavedData, varname, swarmSavedData, swarmname, modeltime=0.0)

	Creates an xdmf file, filename, associating the varSavedData file on
the swarmSavedData file

Notes

xdmf contain 2 files: an .xml and a .h5 file. See http://www.xdmf.org/index.php/Main_Page
This method only needs to be called by the master process, all other
processes return quietly.

	Parameters

	
	filename (str) – The output path to write the xdmf file. Relative or absolute paths may be
used, but all directories must exist.

	varname (str) – The xdmf name to give the swarmVariable

	swarmname (str) – The xdmf name to give the swarm

	swarmSavedData (underworld.utils.SaveFileData) – Handler returned for saving a swarm. underworld.swarm.Swarm.save(xxx)

	varSavedData (underworld.utils.SavedFileData) – Handler returned from saving a SwarmVariable. underworld.swarm.SwarmVariable.save(xxx)

	modeltime (float (default 0.0)) – The time recorded in the xdmf output file

Example

First create the swarm and add a variable:

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh=mesh)
>>> swarmLayout = uw.swarm.layouts.PerCellGaussLayout(swarm,2)
>>> swarm.populate_using_layout(layout=swarmLayout)
>>> swarmVar = swarm.add_variable(dataType="int", count=1)

Write something to variable

>>> import numpy as np
>>> swarmVar.data[:,0] = np.arange(swarmVar.data.shape[0])

Save mesh and var to a file:

>>> swarmDat = swarm.save("saved_swarm.h5")
>>> swarmVarDat = swarmVar.save("saved_swarmvariable.h5")

Now let’s create the xdmf file

>>> swarmVar.xdmf("TESTxdmf", swarmVarDat, "var1", swarmDat, "MrSwarm")

Does file exist?

>>> import os
>>> if uw.rank() == 0: os.path.isfile("TESTxdmf.xdmf")
True

>>> # clean up:
>>> if uw.rank() == 0:
... import os;
... os.remove("saved_swarm.h5")
... os.remove("saved_swarmvariable.h5")
... os.remove("TESTxdmf.xdmf")

	
class underworld.swarm.GaussIntegrationSwarm(mesh, particleCount=None, **kwargs)

	Bases: underworld.swarm._integration_swarm.IntegrationSwarm

Integration swarm which creates particles within an element at the Gauss
points.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – The FeMesh the swarm is supported by. See Swarm.mesh property docstring
for further information.

	particleCount (unsigned. Default is 3, unless Q2 mesh which takes default 5.) – Number of gauss particles in each direction. Must take value in [1,5].

	
class underworld.swarm.VoronoiIntegrationSwarm(swarm, **kwargs)

	Bases: underworld.swarm._integration_swarm.IntegrationSwarm, underworld.function._function.FunctionInput

Class for an IntegrationSwarm that maps to another Swarm

Note that this swarm can act as a function input. In this capacity,
the fundamental function input type is the FEMCoordinate (ie, the particle
local coordinate, the owning mesh, and the owning element). This input
can be reduced to the global coordinate when returned within python. The
FEMCoordinate particle representation is useful when deforming a mesh, as
it is possible to deform the mesh, and then use the FEMCoordinate to reset
the particles within the moved mesh.

	Parameters

	swarm (underworld.swarm.Swarm) – The PIC integration swarm maps to this user provided swarm.

Example

This simple example checks that the true global coordiante, and that
derived from the local coordinate, are close to equal. Note that the
VoronoiIntegrationSwarm uses a voronoi centroid algorithm so we do not
expect particle to exactly coincide.

>>> import underworld as uw
>>> import numpy as np
>>> mesh = uw.mesh.FeMesh_Cartesian()
>>> swarm = uw.swarm.Swarm(mesh)
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,4))
>>> vswarm = uw.swarm.VoronoiIntegrationSwarm(swarm)
>>> vswarm.repopulate()
>>> np.allclose(swarm.particleCoordinates.data, uw.function.input().evaluate(vswarm),atol=1e-1)
True

	
repopulate(weights_calculator=None)

	This method repopulates the voronoi swarm using the provided
global swarm. The weights are also recalculated.

	Parameters

	weights_calculator (underworld.swarm.Weights) – The weights calculator for the Voronoi swarm. If none is provided,
a default DVCWeights calculator is used.

	
class underworld.swarm.Swarm(mesh, particleEscape=False, **kwargs)

	Bases: underworld.swarm._swarmabstract.SwarmAbstract, underworld.function._function.FunctionInput, underworld._stgermain.Save

The Swarm class supports particle like data structures. Each instance of
this class will store a set of unique particles. In this context, particles
are data structures which store a location variable, along with any other
variables the user requests.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – The FeMesh the swarm is supported by. See Swarm.mesh property docstring
for further information.

	particleEscape (bool) – If set to true, particles are deleted when they leave the domain. This
may occur during particle advection, or when the mesh is deformed.

Example

Create a swarm with some variables:

>>> # First we need a mesh:
>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> # Create empty swarm:
>>> swarm = uw.swarm.Swarm(mesh)
>>> # Add a variable:
>>> svar = swarm.add_variable("char",1)
>>> # Add another:
>>> svar = swarm.add_variable("double",3)
>>> # Now use a layout to fill with particles
>>> swarm.particleLocalCount
0
>>> layout = uw.swarm.layouts.PerCellGaussLayout(swarm,2)
>>> swarm.populate_using_layout(layout)
>>> swarm.particleLocalCount
1024
>>> swarm.data[0]
array([0.0132078, 0.0132078])
>>> swarm.owningCell.data[0]
array([0], dtype=int32)

With particleEscape enabled, particles which are no longer within the mesh
domain are deleted.

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh, particleEscape=True)
>>> swarm.particleLocalCount
0
>>> layout = uw.swarm.layouts.PerCellGaussLayout(swarm,2)
>>> swarm.populate_using_layout(layout)
>>> swarm.particleGlobalCount
1024
>>> with mesh.deform_mesh():
... mesh.data[:] += (0.5,0.)
>>> swarm.particleGlobalCount
512

Alternatively, moving the particles:

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh, particleEscape=True)
>>> swarm.particleLocalCount
0
>>> layout = uw.swarm.layouts.PerCellGaussLayout(swarm,2)
>>> swarm.populate_using_layout(layout)
>>> swarm.particleGlobalCount
1024
>>> with swarm.deform_swarm():
... swarm.data[:] -= (0.5,0.)
>>> swarm.particleGlobalCount
512

	
add_particles_with_coordinates(coordinatesArray)

	This method adds particles to the swarm using particle coordinates provided
using a numpy array.

Note that particles with coordinates NOT local to the current processor will
be reject/ignored.

	Parameters

	coordinatesArray (numpy.ndarray) – The numpy array containing the coordinate of the new particles. Array is
expected to take shape n*dim, where n is the number of new particles, and
dim is the dimensionality of the swarm’s supporting mesh.

	Returns

	Array containing the local index of the added particles. Rejected particles
are denoted with an index of -1.

	Return type

	numpy.ndarray

Example

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4,4), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> import numpy as np
>>> arr = np.zeros((5,2))
>>> arr[0] = [0.1,0.1]
>>> arr[1] = [0.2,0.1]
>>> arr[2] = [0.1,0.2]
>>> arr[3] = [-0.1,-0.1]
>>> arr[4] = [0.8,0.8]
>>> swarm.add_particles_with_coordinates(arr)
array([0, 1, 2, -1, 3], dtype=int32)
>>> swarm.particleLocalCount
4
>>> swarm.data
array([[0.1, 0.1],
 [0.2, 0.1],
 [0.1, 0.2],
 [0.8, 0.8]])

	
deform_swarm(**kwds)

	Any particle location modifications must occur within this python
context manager. This is necessary as it is critical that certain
internal objects are updated when particle locations are modified.

	Parameters

	update_owners (bool, default=True) – If this is set to False, particle ownership (which element owns a
particular particle) is not updated at the conclusion of the context
manager. This is often necessary when both the mesh and particles
are advecting simutaneously.

Example

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> layout = uw.swarm.layouts.PerCellGaussLayout(swarm,2)
>>> swarm.populate_using_layout(layout)
>>> swarm.data[0]
array([0.0132078, 0.0132078])

Attempted modification without using deform_swarm() should fail:

>>> swarm.data[0] = [0.2,0.2]
Traceback (most recent call last):
...
ValueError: assignment destination is read-only

Within the deform_swarm() context manager, modification is allowed:

>>> with swarm.deform_swarm():
... swarm.data[0] = [0.2,0.2]
>>> swarm.data[0]
array([0.2, 0.2])

	
fn_particle_found()

	This function returns True where a particle is able to be found using
the provided input to function evaluation.

	Returns

	The function object.

	Return type

	underworld.function.Function

Example

Setup some things:

>>> import numpy as np
>>> mesh = uw.mesh.FeMesh_Cartesian(elementRes=(32,32))
>>> swarm = uw.swarm.Swarm(mesh, particleEscape=True)
>>> layout = uw.swarm.layouts.PerCellGaussLayout(swarm,2)
>>> swarm.populate_using_layout(layout)

Now, evaluate the fn_particle_found function on the swarm.. all
should be true

>>> fn_pf = swarm.fn_particle_found()
>>> fn_pf.evaluate(swarm).all()
True

Evalute at arbitrary coord… should return False

>>> fn_pf.evaluate((0.3,0.9))
array([[False]], dtype=bool)

Now, lets get rid of all particles outside of a circle, and look
to obtain pi/4. First eject particles:

>>> with swarm.deform_swarm():
... for ind,coord in enumerate(swarm.data):
... if np.dot(coord,coord)>1.:
... swarm.data[ind] = (99999.,99999.)

Now integrate and test

>>> incirc = uw.function.branching.conditional(((fn_pf,1.),(True,0.)))
>>> np.isclose(uw.utils.Integral(incirc, mesh).evaluate(),np.pi/4.,rtol=2e-2)
array([True], dtype=bool)

	
load(filename, try_optimise=True, verbose=False)

	Load a swarm from disk. Note that this must be called before any SwarmVariable
members are loaded.

	Parameters

	
	filename (str) – The filename for the saved file. Relative or absolute paths may be
used.

	try_optimise (bool, Default=True) – Will speed up the swarm load time but warning - this algorithm assumes the
previously saved swarm data was made on an identical mesh and mesh partitioning
(number of processors) with respect to the current mesh. If this isn’t the case then
the reloaded particle ordering will be broken, leading to an invalid swarms.
One can disable this optimisation and revert to a brute force algorithm, much slower,
by setting this option to False.

	verbose (bool) – Prints a swarm load progress bar.

Notes

This method must be called collectively by all processes.

Example

Refer to example provided for ‘save’ method.

	
particleGlobalCount

	
	Returns

	The global number (across all processes) of particles in the swarm.

	Return type

	int

	
save(filename)

	Save the swarm to disk.

	Parameters

	filename (str) – The filename for the saved file. Relative or absolute paths may be
used, but all directories must exist.

	Returns

	Data object relating to saved file. This only needs to be retained
if you wish to create XDMF files and can be ignored otherwise.

	Return type

	underworld.utils.SavedFileData

Notes

This method must be called collectively by all processes.

Example

First create the swarm, and populate with layout:

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,2))

Save to a file:

>>> ignoreMe = swarm.save("saved_swarm.h5")

Now let’s try and reload. First create an empty swarm, and then load:

>>> clone_swarm = uw.swarm.Swarm(mesh)
>>> clone_swarm.load("saved_swarm.h5")

Now check for equality:

>>> import numpy as np
>>> np.allclose(swarm.data,clone_swarm.data)
True

>>> # clean up:
>>> if uw.rank() == 0:
... import os;
... os.remove("saved_swarm.h5")

	
shadow_particles_fetch()

	When called, neighbouring processor particles which have coordinates
within the current processor’s shadow zone will be communicated to the
current processor. Ie, the processor shadow zone is populated using
particles that are owned by neighbouring processors. After this
method has been called, particle shadow data is available via the
data_shadow handles of SwarmVariable objects. This data is read only.

Note that you will need to call this whenever neighbouring information
has potentially changed, for example after swarm advection, or after
you have modified a SwarmVariable object.

Any existing shadow information will be discarded when this is called.

Notes

This method must be called collectively by all processes.

	
update_particle_owners()

	This routine will update particles owners after particles have been
moved. This is both in terms of the cell/element the the
particle resides within, and also in terms of the parallel processor
decomposition (particles belonging on other processors will be sent across).

Users should not generally need to call this as it will be called automatically at the
conclusion of a deform_swarm() block.

Notes

This method must be called collectively by all processes.

Example

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,2))
>>> swarm.data[0]
array([0.0132078, 0.0132078])
>>> swarm.owningCell.data[0]
array([0], dtype=int32)
>>> with swarm.deform_swarm():
... swarm.data[0] = [0.1,0.1]
>>> swarm.owningCell.data[0]
array([17], dtype=int32)

	
class underworld.swarm.IntegrationSwarm(mesh, **kwargs)

	Bases: underworld.swarm._swarmabstract.SwarmAbstract

Abstract class definition for IntegrationSwarms.

All IntegrationSwarms have the following SwarmVariables from this class:

	
	localCoordVariabledouble (number of particle, dimensions)

	For local element coordinates of the particle

	
	weightVariabledouble (number of particles)

	For the integration weight of each particle

	
particleWeights

	
	Returns

	Swarm variable recording the weight of the swarm particles.

	Return type

	underworld.swarm.SwarmVariable

	
class underworld.swarm.GaussBorderIntegrationSwarm(mesh, particleCount=None, **kwargs)

	Bases: underworld.swarm._integration_swarm.GaussIntegrationSwarm

Integration swarm which creates particles within the boundary faces of an
element, at the Gauss points.

See parent class for parameters.

	
class underworld.swarm.SwarmAbstract(mesh, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

The SwarmAbstract class supports particle like data structures. Each instance of
this class will store a set of unique particles. In this context, particles
are data structures which store a location variable, along with any other
variables the user requests.

	Parameters

	mesh (underworld.mesh.FeMesh) – The FeMesh the swarm is supported by. See Swarm.mesh property docstring
for further information.

	
add_variable(dataType, count)

	Add a variable to each particle in this swarm. Variables can be added
at any point. Removal of variables is however not currently supported.
See help(SwarmVariable) for further information.

	Parameters

	
	dataType (str) – The data type for the variable. Available types are “char”,
“short”, “int”, “float” or “double”.

	count (unsigned) – The number of values to be stored for each particle.

	Returns

	The newly created swarm variable.

	Return type

	underworld.swarm.SwarmVariable

Example

>>> # first we need a mesh
>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> # create swarm
>>> swarm = uw.swarm.Swarm(mesh)
>>> # add a variable
>>> svar = swarm.add_variable("char",1)
>>> # add another
>>> svar = swarm.add_variable("double",3)
>>> # add some particles
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,2))
>>> # add another variable
>>> svar = swarm.add_variable("double",5)

	
data

	
	Returns

	Numpy proxy array to underlying particle coordinate data. Note that
this is an alias to swarm.particleCoordinates.data. Check
SwarmVariable.data for further info.

	Return type

	numpy.ndarray

	
globalId

	
	Returns

	Swarm variable recording a particle global identifier. Not yet
implemented.

	Return type

	underworld.swarm.SwarmVariable

	
mesh

	
	Returns

	Supporting FeMesh for this Swarm. All swarms are required to be
supported by mesh (or similar) objects, which provide the data structures
necessary for efficient particle locating/tracking, as well as the necessary
mechanism for the swarm parallel decomposition.

	Return type

	underworld.mesh.FeMesh

	
owningCell

	
	Returns

	Swarm variable recording the owning cell of the swarm particles.
This will usually correspond to the owning element local id.

	Return type

	underworld.swarm.SwarmVariable

	
particleCoordinates

	
	Returns

	Swarm variable recording the coordinates of the swarm particles.

	Return type

	underworld.swarm.SwarmVariable

	
particleLocalCount

	
	Returns

	Number of swarm particles within the current processes local space.

	Return type

	int

	
populate_using_layout(layout)

	This method uses the provided layout to populate the swarm with particles.
Usually layouts add particles across the entire domain. Available
layouts may be found in the swarm.layouts module.
Note that Layouts can only currently be used on empty swarms.
Also note that all numpy arrays associated with swarm variables must
be deleted before a layout can be applied.

	Parameters

	layout (underworld.swarm.layouts._ParticleLayoutAbstract) – The layout which determines where particles are created and added.

Example

>>> # first we need a mesh
>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> # create swarm
>>> swarm = uw.swarm.Swarm(mesh)
>>> # add populate
>>> swarm.populate_using_layout(uw.swarm.layouts.PerCellGaussLayout(swarm,2))

	
stateId

	
	Returns

	Swarm state identifier. This is incremented whenever the swarm is
modified.

	Return type

	int

	
variables

	
	Returns

	List of swarm variables associated with this swarm.

	Return type

	list

 underworld.swarm.layouts module

underworld.swarm.layouts module

This module contains classes for populating swarms with particles across
the domain.

Module Summary

classes:

	underworld.swarm.layouts.PerCellSpaceFillerLayout

	This layout fills the domain with particles in a quasi-random pattern.

	underworld.swarm.layouts.GlobalSpaceFillerLayout

	This layout fills the domain with particles in a quasi-random pattern.

	underworld.swarm.layouts.PerCellGaussLayout

	This layout populates the domain with particles located at gauss locations within each element of the swarm’s associated finite element mesh.

	underworld.swarm.layouts.PerCellRandomLayout

	This layout fills the domain with particles in a random (per element) pattern.

Module Details

classes:

	
class underworld.swarm.layouts.PerCellSpaceFillerLayout(swarm, particlesPerCell, **kwargs)

	Bases: underworld.swarm.layouts._PerCellMeshParticleLayout

This layout fills the domain with particles in a quasi-random pattern. It utilises
sobol sequences to generate per element particle locations which are more uniform than that
achieved by a purely random generator.

	Parameters

	
	swarm (underworld.swarm.Swarm) – The swarm this layout will act upon

	particlesPerCell (int) – The number of particles per element that this layout will generate.

Example

>>> import underworld as uw
>>> mesh = uw.mesh.FeMesh_Cartesian('Q1/dQ0', (1,1), (0.,0.), (1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> layout = uw.swarm.layouts.PerCellSpaceFillerLayout(swarm,particlesPerCell=4)
>>> swarm.populate_using_layout(layout)
>>> swarm.particleLocalCount
4
>>> swarm.particleCoordinates.data
array([[0.5 , 0.5],
 [0.25 , 0.75],
 [0.75 , 0.25],
 [0.375, 0.625]])

	
class underworld.swarm.layouts.GlobalSpaceFillerLayout(swarm, particlesPerCell, **kwargs)

	Bases: underworld.swarm.layouts._ParticleLayoutAbstract

This layout fills the domain with particles in a quasi-random pattern. It utilises
sobol sequences to generate global particle locations which are more uniform than that
achieved by a purely random generator. This layout is mostly useful where populating
particles across a rectangular domain.

	Parameters

	
	swarm (underworld.swarm.Swarm) – The swarm this layout will act upon

	particlesPerCell (float) – The average number of particles per element that this layout will generate.

Example

>>> import underworld as uw
>>> mesh = uw.mesh.FeMesh_Cartesian('Q1/dQ0', (1,1), (0.,0.), (1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> layout = uw.swarm.layouts.GlobalSpaceFillerLayout(swarm,particlesPerCell=4)
>>> swarm.populate_using_layout(layout)
>>> swarm.particleLocalCount
4
>>> swarm.particleCoordinates.data
array([[0.5 , 0.5],
 [0.25 , 0.75],
 [0.75 , 0.25],
 [0.375, 0.625]])

	
class underworld.swarm.layouts.PerCellGaussLayout(swarm, gaussPointCount, **kwargs)

	Bases: underworld.swarm.layouts._ParticleLayoutAbstract

This layout populates the domain with particles located at gauss locations
within each element of the swarm’s associated finite element mesh.

	Parameters

	
	swarm (underworld.swarm.Swarm) – The swarm this layout will act upon

	gaussPointCount (int) – Per cell, the number of gauss points in each dimensional direction.
Must take an int value between 1 and 5 inclusive.

Example

>>> import underworld as uw
>>> # choose mesh to coincide with global element
>>> mesh = uw.mesh.FeMesh_Cartesian('Q1/dQ0', (1,1), (-1.,-1.), (1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> layout = uw.swarm.layouts.PerCellGaussLayout(swarm,gaussPointCount=2)
>>> swarm.populate_using_layout(layout)
>>> swarm.particleLocalCount
4
>>> swarm.particleCoordinates.data
array([[-0.57735027, -0.57735027],
 [0.57735027, -0.57735027],
 [-0.57735027, 0.57735027],
 [0.57735027, 0.57735027]])
>>> import math
>>> # lets check one of these gauss points
>>> (swarm.particleCoordinates.data[3][0] - math.sqrt(1./3.)) < 1.e-10
True

	
class underworld.swarm.layouts.PerCellRandomLayout(swarm, particlesPerCell, seed=13, **kwargs)

	Bases: underworld.swarm.layouts._PerCellMeshParticleLayout

This layout fills the domain with particles in a random (per element) pattern.

	Parameters

	
	swarm (underworld.swarm.Swarm) – The swarm this layout will act upon

	particlesPerCell (int) – The number of particles per element that this layout will generate.

	seed (int) – Seed for random generator. Default is 13.

Example

>>> import underworld as uw
>>> mesh = uw.mesh.FeMesh_Cartesian('Q1/dQ0', (1,1), (0.,0.), (1.,1.))
>>> swarm = uw.swarm.Swarm(mesh)
>>> layout = uw.swarm.layouts.PerCellRandomLayout(swarm,particlesPerCell=4)
>>> swarm.populate_using_layout(layout)
>>> swarm.particleLocalCount
4
>>> swarm.particleCoordinates.data
array([[0.24261743, 0.67115852],
 [0.16116546, 0.70790335],
 [0.73160516, 0.08792286],
 [0.71953113, 0.15966135]])

 underworld.mesh module

underworld.mesh module

Implementation relating to meshing.

Module Summary

classes:

	underworld.mesh.FeMesh_IndexSet

	This class ties the FeMesh instance to an index set, and stores other metadata relevant to the set.

	underworld.mesh.FeMesh

	The FeMesh class provides the geometry and topology of a finite element discretised domain.

	underworld.mesh.FeMesh_Cartesian

	This class generates a finite element mesh which is topologically cartesian and geometrically regular.

	underworld.mesh.MeshVariable

	The MeshVariable class generates a variable supported by a finite element mesh.

Module Details

classes:

	
class underworld.mesh.FeMesh_IndexSet(object, topologicalIndex=None, *args, **kwargs)

	Bases: underworld.container._indexset.ObjectifiedIndexSet, underworld.function._function.FunctionInput

This class ties the FeMesh instance to an index set, and stores other
metadata relevant to the set.

	Parameters

	
	object (underworld.mesh.FeMesh) – The FeMesh instance from which the IndexSet was extracted.

	topologicalIndex (int) – Mesh topological index for which the IndexSet relates. See
docstring for further info.

Example

>>> amesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4,4), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> iset = uw.libUnderworld.StgDomain.RegularMeshUtils_CreateGlobalMaxISet(amesh._mesh)
>>> uw.mesh.FeMesh_IndexSet(amesh, topologicalIndex=0, size=amesh.nodesGlobal, fromObject=iset)
FeMesh_IndexSet([4, 9, 14, 19, 24])

	
topologicalIndex

	
	Returns

	
	The topological index for the indices. The mapping is:

	0 - vertex
1 - edge
2 - face
3 - volume

	Return type

	int

	
class underworld.mesh.FeMesh(elementType, generator=None, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent, underworld.function._function.FunctionInput

The FeMesh class provides the geometry and topology of a finite
element discretised domain. The FeMesh is implicitly parallel. Some aspects
may be local or global, but this is generally handled automatically.

A number of element types are supported.

	Parameters

	
	elementType (str) – Element type for FeMesh. See FeMesh.elementType docstring for further info.

	generator (underworld.mesh.MeshGenerator) – Generator object which builds the FeMesh. See FeMesh.generator docstring for
further info.

	
add_post_deform_function(function)

	Adds a function function to be executed after mesh deformation
is applied.

	Parameters

	function (FunctionType) – Python (not underworld) function to be executed. Closures should be
used where parameters are required.

	
add_pre_deform_function(function)

	Adds a function function to be executed before mesh deformation
is applied.

	Parameters

	function (FunctionType) – Python (not underworld) function to be executed. Closures should be
used where parameters are required.

	
add_variable(nodeDofCount, dataType='double', **kwargs)

	Creates and returns a mesh variable using the discretisation of the given mesh.

To set / read nodal values, use the numpy interface via the ‘data’ property.

	Parameters

	
	dataType (string) – The data type for the variable.
Note that only ‘double’ type variables are currently
supported.

	nodeDofCount (int) – Number of degrees of freedom per node the variable will have

	Returns

	The newly created mesh variable.

	Return type

	underworld.mesh.MeshVariable

Example

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> scalarFeVar = linearMesh.add_variable(nodeDofCount=1, dataType="double")
>>> q0field = linearMesh.subMesh.add_variable(1) # adds variable to secondary elementType discretisation

	
data

	Numpy proxy array proxy to underlying object vertex data. Note that the
returned array is a proxy for all the local vertices, and it is
provided as 1d list.

As these arrays are simply proxys to the underlying memory structures,
no data copying is required.

Note that this property returns a read-only numpy array as default. If
you wish to modify mesh vertex locations, you are required to use the
deform_mesh context manager.

If you are modifying the mesh, remember to modify any submesh associated
with it accordingly.

	Returns

	The data proxy array.

	Return type

	numpy.ndarray

Example

>>> import underworld as uw
>>> someMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1', elementRes=(2,2), minCoord=(-1.,-1.), maxCoord=(1.,1.))
>>> someMesh.data.shape
(9, 2)

You can retrieve individual vertex locations

>>> someMesh.data[1]
array([0., -1.])

You can modify these locations directly, but take care not to tangle the mesh!
Mesh modifications must occur within the deform_mesh context manager.

>>> with someMesh.deform_mesh():
... someMesh.data[1] = [0.1,-1.1]
>>> someMesh.data[1]
array([0.1, -1.1])

	
data_elementNodes

	
	Returns

	Array specifying the nodes (global node id) for a given element (local element id).
NOTE: Length is local size.

	Return type

	numpy.ndarray

	
data_elgId

	
	Returns

	Array specifying global element ids. Length is domain size, (local+shadow).

	Return type

	numpy.ndarray

	
data_nodegId

	
	Returns

	Array specifying global node ids. Length is domain size, (local+shadow).

	Return type

	numpy.ndarray

	
deform_mesh(**kwds)

	Any mesh deformation must occur within this python context manager. Note
that certain algorithms may be switched to their irregular mesh equivalents
(if not already set this way). This may have performance implications.

Any submesh will also be appropriately updated on return from the context
manager, as will various mesh metrics.

	Parameters

	isRegular (bool) – The general assumption is that the deformed mesh will no longer be regular
(orthonormal), and more general but less efficient algorithms will be
selected via this context manager. To over-ride this behaviour, set
this parameter to True.

Example

>>> import underworld as uw
>>> someMesh = uw.mesh.FeMesh_Cartesian()
>>> with someMesh.deform_mesh():
... someMesh.data[0] = [0.1,0.1]
>>> someMesh.data[0]
array([0.1, 0.1])

	
elementType

	
	Returns

	Element type for FeMesh. Supported types are “Q2”, “Q1”, “dQ1”, “dPc1” and “dQ0”.

	Return type

	str

	
elementsDomain

	
	Returns

	Returns the number of domain (local+shadow) elements on the mesh

	Return type

	int

Example

>>> someMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1', elementRes=(2,2), minCoord=(-1.,-1.), maxCoord=(1.,1.))
>>> someMesh.elementsDomain
4

	
elementsGlobal

	
	Returns

	Returns the number of global elements on the mesh

	Return type

	int

Example

>>> someMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1', elementRes=(2,2), minCoord=(-1.,-1.), maxCoord=(1.,1.))
>>> someMesh.elementsGlobal
4

	
elementsLocal

	
	Returns

	Returns the number of local elements on the mesh

	Return type

	int

Example

>>> someMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1', elementRes=(2,2), minCoord=(-1.,-1.), maxCoord=(1.,1.))
>>> someMesh.elementsLocal
4

	
generator

	Getter/Setter for the mesh MeshGenerator object.

	Returns

	Object which builds the mesh. Note that the mesh itself may be a
generator, in which case this property will return the mesh object iself.

	Return type

	underworld.mesh.MeshGenerator

	
load(filename)

	Load the mesh from disk.

	Parameters

	filename (str) – The filename for the saved file. Relative or absolute paths may be
used, but all directories must exist.

Notes

This method must be called collectively by all processes.

If the file data array is the same length as the current mesh
global size, it is assumed the file contains compatible data. Note that
this may not be the case where for example where you have saved using a
2*8 resolution mesh, then loaded using an 8*2 resolution mesh.

Provided files must be in hdf5 format, and use the correct schema.

Example

Refer to example provided for ‘save’ method.

	
nodesDomain

	
	Returns

	Returns the number of domain (local+shadow) nodes on the mesh.

	Return type

	int

	
nodesGlobal

	
	Returns

	Returns the number of global nodes on the mesh

	Return type

	int

Example

>>> someMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1', elementRes=(2,2), minCoord=(-1.,-1.), maxCoord=(1.,1.))
>>> someMesh.nodesGlobal
9

	
nodesLocal

	
	Returns

	Returns the number of local nodes on the mesh.

	Return type

	int

	
reset()

	Reset the mesh.

Templated mesh (such as the DQ0 mesh) will be reset according
to the current state of their geometryMesh.

Other mesh (such as the Q1 & Q2) will be reset to their
post-construction state.

Notes

This method must be called collectively by all processes.

	
save(filename)

	Save the mesh to disk

	Parameters

	filename (string) – The name of the output file.

	Returns

	Data object relating to saved file. This only needs to be retained
if you wish to create XDMF files and can be ignored otherwise.

	Return type

	underworld.utils.SavedFileData

Notes

This method must be called collectively by all processes.

Example

First create the mesh:

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))

Save to a file (note that the ‘ignoreMe’ object isn’t really required):

>>> ignoreMe = mesh.save("saved_mesh.h5")

Now let’s try and reload. First create new mesh (note the different spatial size):

>>> clone_mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.5,1.5))

Confirm clone mesh is different from original mesh:

>>> import numpy as np
>>> np.allclose(mesh.data,clone_mesh.data)
False

Now reload using saved file:

>>> clone_mesh.load("saved_mesh.h5")

Now check for equality:

>>> np.allclose(mesh.data,clone_mesh.data)
True

>>> # clean up:
>>> if uw.rank() == 0:
... import os;
... os.remove("saved_mesh.h5")

	
specialSets

	
	Returns

	This dictionary stores a set of special data sets relating to mesh objects.

	Return type

	dict

Example

>>> import underworld as uw
>>> someMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1', elementRes=(2,2), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> someMesh.specialSets.keys()
['MaxI_VertexSet', 'Top_VertexSet', 'Left_VertexSet', 'MinI_VertexSet', 'AllWalls_VertexSet', 'Bottom_VertexSet', 'Right_VertexSet', 'MinJ_VertexSet', 'MaxJ_VertexSet', 'Empty']
>>> someMesh.specialSets["MinJ_VertexSet"]
FeMesh_IndexSet([0, 1, 2])

	
class underworld.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4, 4), minCoord=(0.0, 0.0), maxCoord=(1.0, 1.0), periodic=None, partitioned=True, **kwargs)

	Bases: underworld.mesh._mesh.FeMesh, underworld.mesh._mesh.CartesianMeshGenerator

This class generates a finite element mesh which is topologically cartesian
and geometrically regular. It is possible to directly build a dual mesh by
passing a pair of element types to the constructor.

Refer to parent classes for parameters beyond those below.

	Parameters

	
	elementType (str) – Mesh element type. Note that this class allows the user to
(optionally) provide a pair of elementTypes for which a dual
mesh will be created.
The submesh is accessible through the ‘subMesh’ property. The
primary mesh itself is the object returned by this constructor.

	elementRes (list,tuple) – List or tuple of ints specifying mesh resolution. See CartesianMeshGenerator.elementRes
docstring for further information.

	minCoord (list, tuple) – List or tuple of floats specifying minimum mesh location. See CartesianMeshGenerator.minCoord
docstring for further information.

	maxCoord (list, tuple) – List or tuple of floats specifying maximum mesh location. See CartesianMeshGenerator.maxCoord
docstring for further information.

	periodic (list, tuple) – List or tuple of bools, specifying mesh periodicity in each direction.

	partitioned (bool) – If false, the mesh is not partitioned across entire processor pool. Instead
mesh is entirely owned by processor which generated it.

Examples

To create a linear mesh:

>>> import underworld as uw
>>> someMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> someMesh.dim
2
>>> someMesh.elementRes
(16, 16)

Alternatively, you can create a linear/constant dual mesh

>>> someDualMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> someDualMesh.elementType
'Q1'
>>> subMesh = someDualMesh.subMesh
>>> subMesh.elementType
'DQ0'

To set / read vertex coords, use the numpy interface via the ‘data’ property.

	
integrate(fn)

	Perform a domain integral of the given underworld function over this mesh

	Parameters

	mesh (uw.mesh.FeMesh_Cartesian) – Domain to perform integral over.

Examples

>>> mesh = uw.mesh.FeMesh_Cartesian(minCoord=(0.0,0.0), maxCoord=(1.0,2.0))
>>> fn_1 = uw.function.misc.constant(2.0)
>>> np.allclose(mesh.integrate(fn_1)[0], 4)
True

>>> fn_2 = uw.function.misc.constant(2.0) * (0.5, 1.0)
>>> np.allclose(mesh.integrate(fn_2), [2,4])
True

	
subMesh

	
	Returns

	Returns the submesh where the object is a dual mesh, or None otherwise.

	Return type

	underworld.mesh.FeMesh

	
class underworld.mesh.MeshVariable(mesh, nodeDofCount, dataType='double', **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent, underworld.function._function.Function, underworld._stgermain.Save, underworld._stgermain.Load

The MeshVariable class generates a variable supported by a finite element mesh.

To set / read nodal values, use the numpy interface via the ‘data’ property.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – The supporting mesh for the variable.

	dataType (string) – The data type for the variable.
Note that only ‘double’ type variables are currently
supported.

	nodeDofCount (int) – Number of degrees of freedom per node the variable will have.

See property docstrings for further information.

Example

For example, to create a scalar meshVariable:

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> scalarFeVar = uw.mesh.MeshVariable(mesh=linearMesh, nodeDofCount=1, dataType="double")

or a vector meshvariable can be created:

>>> vectorFeVar = uw.mesh.MeshVariable(mesh=linearMesh, nodeDofCount=3, dataType="double")

	
copy(deepcopy=False)

	This method returns a copy of the meshvariable.

	Parameters

	deepcopy (bool) – If True, the variable’s data is also copied into
new variable.

	Returns

	The mesh variable copy.

	Return type

	underworld.mesh.MeshVariable

Example

>>> mesh = uw.mesh.FeMesh_Cartesian()
>>> var = uw.mesh.MeshVariable(mesh,2)
>>> import math
>>> var.data[:] = (math.pi,math.exp(1.))
>>> varCopy = var.copy()
>>> varCopy.mesh == var.mesh
True
>>> varCopy.nodeDofCount == var.nodeDofCount
True
>>> import numpy as np
>>> np.allclose(var.data,varCopy.data)
False
>>> varCopy2 = var.copy(deepcopy=True)
>>> np.allclose(var.data,varCopy2.data)
True

	
data

	Numpy proxy array to underlying variable data.
Note that the returned array is a proxy for all the local nodal
data, and is provided as 1d list. It is possible to change the
shape of this numpy array to reflect the cartesian topology (where
appropriate), though again only the local portion of the decomposed
domain will be available, and the shape will not necessarily be
identical on all processors.

As these arrays are simply proxys to the underlying memory structures,
no data copying is required.

	Returns

	The proxy array.

	Return type

	numpy.ndarray

Example

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> scalarFeVar = uw.mesh.MeshVariable(mesh=linearMesh, nodeDofCount=1, dataType="double")
>>> scalarFeVar.data.shape
(289, 1)

You can retrieve individual nodal values

>>> scalarFeVar.data[100]
array([0.])

Likewise you can modify nodal values

>>> scalarFeVar.data[100] = 15.333
>>> scalarFeVar.data[100]
array([15.333])

	
dataType

	
	Returns

	Data type for variable. Supported types are ‘double’.

	Return type

	str

	
fn_gradient

	Returns a Function for the gradient field of this meshvariable.

Note that for a scalar variable T, the gradient function returns
an array of the form:

\[[\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}]\]

and for a vector variable v:

\[[\frac{\partial v_x}{\partial x}, \frac{\partial v_x}{\partial y}, \frac{\partial v_x}{\partial z},
 \frac{\partial v_y}{\partial x}, \frac{\partial v_y}{\partial y}, \frac{\partial v_y}{\partial z},
 \frac{\partial v_z}{\partial x}, \frac{\partial v_z}{\partial y}, \frac{\partial v_z}{\partial z}]\]

	Returns

	The gradient function.

	Return type

	underworld.function.Function

	
load(filename, interpolate=False)

	Load the MeshVariable from disk.

	Parameters

	
	filename (str) – The filename for the saved file. Relative or absolute paths may be
used, but all directories must exist.

	interpolate (bool) – Set to True to interpolate a file containing different resolution data.
Note that a temporary MeshVariable with the file data will be build
on each processor. Also note that the temporary MeshVariable
can only be built if its corresponding mesh file is available.
Also note that the supporting mesh mush be regular.

Notes

This method must be called collectively by all processes.

If the file data array is the same length as the current variable
global size, it is assumed the file contains compatible data. Note that
this may not be the case where for example where you have saved using a
2*8 resolution mesh, then loaded using an 8*2 resolution mesh.

Provided files must be in hdf5 format, and use the correct schema.

Example

Refer to example provided for ‘save’ method.

	
mesh

	
	Returns

	Supporting FeMesh for this MeshVariable.

	Return type

	underworld.mesh.FeMesh

	
nodeDofCount

	
	Returns

	Degrees of freedom on each mesh node that this variable provides.

	Return type

	int

	
save(filename, meshHandle=None)

	Save the MeshVariable to disk.

	Parameters

	
	filename (string) – The name of the output file. Relative or absolute paths may be
used, but all directories must exist.

	meshHandle (uw.utils.SavedFileData , optional) – The saved mesh file handle. If provided, a link is created within the
mesh variable file to this saved mesh file. Important for checkpoint when
the mesh deforms.

Notes

This method must be called collectively by all processes.

	Returns

	Data object relating to saved file. This only needs to be retained
if you wish to create XDMF files and can be ignored otherwise.

	Return type

	underworld.utils.SavedFileData

Example

First create the mesh add a variable:

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> var = uw.mesh.MeshVariable(mesh=mesh, nodeDofCount=1, dataType="double")

Write something to variable

>>> import numpy as np
>>> var.data[:,0] = np.arange(var.data.shape[0])

Save to a file (note that the ‘ignoreMe’ object isn’t really required):

>>> ignoreMe = var.save("saved_mesh_variable.h5")

Now let’s try and reload.

>>> clone_var = uw.mesh.MeshVariable(mesh=mesh, nodeDofCount=1, dataType="double")
>>> clone_var.load("saved_mesh_variable.h5")

Now check for equality:

>>> np.allclose(var.data,clone_var.data)
True

>>> # clean up:
>>> if uw.rank() == 0:
... import os;
... os.remove("saved_mesh_variable.h5")

	
syncronise()

	This method is often necessary when Underworld is operating in parallel.

It will syncronise the mesh variable so that it is consistent
with it’s parallel neighbours. Specifically, the shadow space of each
process obtains the required data from neighbouring processes.

	
xdmf(filename, fieldSavedData, varname, meshSavedData, meshname, modeltime=0.0)

	Creates an xdmf file, filename, associating the fieldSavedData file on
the meshSavedData file

Notes

xdmf contain 2 files: an .xml and a .h5 file. See http://www.xdmf.org/index.php/Main_Page
This method only needs to be called by the master process, all other
processes return quiely.

	Parameters

	
	filename (str) – The output path to write the xdmf file. Relative or absolute paths may be
used, but all directories must exist.

	varname (str) – The xdmf name to give the field

	meshSavedData (underworld.utils.SaveFileData) – Handler returned for saving a mesh. underworld.mesh.save(xxx)

	meshname (str) – The xdmf name to give the mesh

	fieldSavedData (underworld.SavedFileData) – Handler returned from saving a field. underworld.mesh.save(xxx)

	modeltime (float) – The time recorded in the xdmf output file

Example

First create the mesh add a variable:

>>> mesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(16,16), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> var = uw.mesh.MeshVariable(mesh=mesh, nodeDofCount=1, dataType="double")

Write something to variable

>>> import numpy as np
>>> var.data[:,0] = np.arange(var.data.shape[0])

Save mesh and var to a file:

>>> meshDat = mesh.save("saved_mesh.h5")
>>> varDat = var.save("saved_mesh_variable.h5")

Now let’s create the xdmf file

>>> var.xdmf("TESTxdmf", varDat, "var1", meshDat, "meshie")

Does file exist?

>>> import os
>>> if uw.rank() == 0: os.path.isfile("TESTxdmf.xdmf")
True

Clean up:

>>> if uw.rank() == 0:
... import os;
... os.remove("saved_mesh_variable.h5")
... os.remove("saved_mesh.h5")
... os.remove("TESTxdmf.xdmf")

 underworld.systems module

underworld.systems module

This module contains routines relating to differential system.

Module Summary

submodules:

	underworld.systems.sle module

functions:

	underworld.systems.Solver

	This method simply returns a necessary solver for the provided system.

classes:

	underworld.systems.Stokes

	This class provides functionality for a discrete representation of the Stokes flow equations.

	underworld.systems.HeatSolver

	Steady State Heat Equation Solver.

	underworld.systems.SteadyStateHeat

	This class provides functionality for a discrete representation of the steady state heat equation.

	underworld.systems.StokesSolver

	The Block Stokes Schur Complement Solver: This solves the saddle-point system

	underworld.systems.SteadyStateDarcyFlow

	This class provides functionality for a discrete representation of the steady state darcy flow equation.

	underworld.systems.TimeIntegration

	Abstract class for integrating numerical objects (fields, swarms, etc.) in time.

	underworld.systems.AdvectionDiffusion

	This class provides functionality for a discrete representation of an advection-diffusion equation.

	underworld.systems.SwarmAdvector

	Objects of this class advect a swarm through time using the provided velocity field.

Module Details

functions:

	
underworld.systems.Solver(eqs, type='BSSCR', *args, **kwargs)

	This method simply returns a necessary solver for the provided system.

classes:

	
class underworld.systems.Stokes(velocityField, pressureField, fn_viscosity, fn_bodyforce=None, fn_one_on_lambda=None, fn_source=None, voronoi_swarm=None, conditions=[], _removeBCs=True, _fn_viscosity2=None, _fn_director=None, fn_stresshistory=None, _fn_stresshistory=None, _fn_v0=None, _fn_p0=None, _callback_post_solve=None, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

This class provides functionality for a discrete representation
of the Stokes flow equations.

Specifically, the class uses a mixed finite element method to
construct a system of linear equations which may then be solved
using an object of the underworld.system.Solver class.

The underlying element types are determined by the supporting
mesh used for the ‘velocityField’ and ‘pressureField’ parameters.

The strong form of the given boundary value problem, for \(f\),
\(g\) and \(h\) given, is

\[\begin{split}\begin{align}
\sigma_{ij,j} + f_i =& \: 0 & \text{ in } \Omega \\
u_{k,k} + \frac{p}{\lambda} =& \: H & \text{ in } \Omega \\
u_i =& \: g_i & \text{ on } \Gamma_{g_i} \\
\sigma_{ij}n_j =& \: h_i & \text{ on } \Gamma_{h_i} \\
\end{align}\end{split}\]

where,

	\(\sigma_{i,j}\) is the stress tensor

	\(u_i\) is the velocity,

	\(p\) is the pressure,

	\(f_i\) is a body force,

	\(\lambda\) is pseudo compressibility factor,

	\(H\) is the compressible equation source term,

	\(g_i\) are the velocity boundary conditions (DirichletCondition)

	\(h_i\) are the traction boundary conditions (NeumannCondition).

The problem boundary, \(\Gamma\),
admits the decompositions \(\Gamma=\Gamma_{g_i}\cup\Gamma_{h_i}\) where
\(\emptyset=\Gamma_{g_i}\cap\Gamma_{h_i}\). The equivalent weak form is:

\[\int_{\Omega} w_{(i,j)} \sigma_{ij} \, d \Omega = \int_{\Omega} w_i \, f_i \, d\Omega + \sum_{j=1}^{n_{sd}} \int_{\Gamma_{h_j}} w_i \, h_i \, d \Gamma\]

where we must find \(u\) which satisfies the above for all \(w\)
in some variational space.

	Parameters

	
	velocityField (underworld.mesh.MeshVariable) – Variable used to record system velocity.

	pressureField (underworld.mesh.MeshVariable) – Variable used to record system pressure.

	fn_viscosity (underworld.function.Function) – Function which reports a viscosity value.
Function must return scalar float values.

	fn_bodyforce (underworld.function.Function, Default = None) – Function which reports a body force for the system.
Function must return float values of identical dimensionality
to the provided velocity variable.

	fn_one_on_lambda (underworld.function.Function, Default = None) – Pseudo-compressibility factor. Note that non-zero values are
incompatible with the ‘penalty’ stokes solver. Ensure a
‘penalty’ equal to 0 is used if this function is non-zero.
By default this is the case.

	fn_source (underworld.function.Function, Default = None) – Mass source term. Check fn_one_on_lambda for usage caveats.

	fn_stresshistory (underworld.function.Function, Default = None) – Function which defines the stress history term used for viscoelasticity.
Function is a vector of size 3 (dim=2) or 6 (dim=3) representing a symetric tensor.

	voronoi_swarm (underworld.swarm.Swarm) – If a voronoi_swarm is provided, voronoi type numerical integration is
utilised. The provided swarm is used as the basis for the voronoi
integration. If no voronoi_swarm is provided, Gauss integration
is used.

	conditions (underworld.conditions.SystemCondition) – Numerical conditions to impose on the system. This should be supplied as
the condition itself, or a list object containing the conditions.

Notes

Constructor must be called by collectively all processes.

	
eqResiduals

	Returns the stokes flow equations’ residuals from the latest solve. Residual calculations
use the matrices and vectors of the discretised problem.
The residuals correspond to the momentum equation and the continuity equation.

	Returns

	r1 is the momentum equation residual
r2 is the continuity equation residual

	Return type

	(r1, r2) - 2 tuple of doubles

Notes

This method must be called collectively by all processes.

	
fn_bodyforce

	The body force function. You may change this function directly via this
property.

	
fn_one_on_lambda

	A bulk viscosity parameter

	
fn_source

	The volumetric source term function. You may change this function directly via this
property.

	
fn_viscosity

	The viscosity function. You may change this function directly via this
property.

	
stokes_callback

	Return the callback function used by this system

	
velocity_rms()

	Calculates RMS velocity as follows

\[v_{rms} = \sqrt{ \frac{ \int_V (\mathbf{v}.\mathbf{v}) \, \mathrm{d}V } {\int_V \, \mathrm{d}V} }\]

	
class underworld.systems.HeatSolver(heatSLE, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

Steady State Heat Equation Solver.

	
configure(solve_type='')

	Configure velocity/inner solver (A11 PETSc prefix).

solve_type can be one of:

	mumps : MUMPS parallel direct solver.

	superludist : SuperLU parallel direct solver.

	superlu : SuperLU direct solver (serial only).

	lu : LU direct solver (serial only).

	
solve(nonLinearIterate=None, nonLinearTolerance=0.01, nonLinearMaxIterations=500, callback_post_solve=None, **kwargs)

	Solve the HeatEq system

	Parameters

	
	nonLinearIterate (bool) – True will perform non linear iterations iterations, False (or 0) will not

	nonLinearTolerance (float, Default=1.0e-2) – Relative tolerance criterion for the change in the velocity field

	nonLinearMaxIterations (int, Default=500) – Maximum number of non linear iteration to perform

	callback_post_sovle (func, Default=None) – Optional callback function to be performed at the end of a linear solve iteration.
Commonly this will be used to perform operations between non linear iterations, for example,
calibrating the solution or removing the system null space.

	
class underworld.systems.SteadyStateHeat(temperatureField, fn_diffusivity, fn_heating=0.0, voronoi_swarm=None, conditions=[], _removeBCs=True, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

This class provides functionality for a discrete representation
of the steady state heat equation.

The class uses a standard Galerkin finite element method to
construct a system of linear equations which may then be solved
using an object of the underworld.system.Solver class.

The underlying element types are determined by the supporting
mesh used for the ‘temperatureField’.

The strong form of the given boundary value problem, for \(f\),
\(h\) and \(h\) given, is

\[\begin{split}\begin{align}
q_i =& - \alpha \, u_{,i} & \\
q_{i,i} =& \: f & \text{ in } \Omega \\
u =& \: g & \text{ on } \Gamma_g \\
-q_i n_i =& \: h & \text{ on } \Gamma_h \\
\end{align}\end{split}\]

where, \(\alpha\) is the diffusivity, \(u\) is the temperature,
\(f\) is a source term, \(g\) is the Dirichlet condition, and
\(h\) is a Neumann condition. The problem boundary, \(\Gamma\),
admits the decomposition \(\Gamma=\Gamma_g\cup\Gamma_h\) where
\(\emptyset=\Gamma_g\cap\Gamma_h\). The equivalent weak form is:

\[-\int_{\Omega} w_{,i} \, q_i \, d \Omega = \int_{\Omega} w \, f \, d\Omega + \int_{\Gamma_h} w \, h \, d \Gamma\]

where we must find \(u\) which satisfies the above for all \(w\)
in some variational space.

	Parameters

	
	temperatureField (underworld.mesh.MeshVariable) – The solution field for temperature.

	fn_diffusivity (underworld.function.Function) – The function that defines the diffusivity across the domain.

	fn_heating (underworld.function.Function) – A function that defines the heating across the domain. Optional.

	voronoi_swarm (underworld.swarm.Swarm) – If a voronoi_swarm is provided, voronoi type numerical integration is
utilised. The provided swarm is used as the basis for the voronoi
integration. If no voronoi_swarm is provided, Gauss integration
is used.

	conditions (underworld.conditions.SystemCondition) – Numerical conditions to impose on the system. This should be supplied as
the condition itself, or a list object containing the conditions.

Notes

Constructor must be called collectively by all processes.

Example

Setup a basic thermal system:

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4,4), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> tField = uw.mesh.MeshVariable(linearMesh, 1)
>>> topNodes = linearMesh.specialSets["MaxJ_VertexSet"]
>>> bottomNodes = linearMesh.specialSets["MinJ_VertexSet"]
>>> tbcs = uw.conditions.DirichletCondition(tField, topNodes + bottomNodes)
>>> tField.data[topNodes.data] = 0.0
>>> tField.data[bottomNodes.data] = 1.0
>>> tSystem = uw.systems.SteadyStateHeat(temperatureField=tField, fn_diffusivity=1.0, conditions=[tbcs])

Example with non diffusivity:

>>> k = tField + 1.0
>>> tSystem = uw.systems.SteadyStateHeat(temperatureField=tField, fn_diffusivity=k, conditions=[tbcs])
>>> solver = uw.systems.Solver(tSystem)
>>> solver.solve()
Traceback (most recent call last):
...
RuntimeError: Nonlinearity detected.
Diffusivity function depends on the temperature field provided to the system.
Please set the 'nonLinearIterate' solve parameter to 'True' or 'False' to continue.
>>> solver.solve(nonLinearIterate=True)

	
fn_diffusivity

	The diffusivity function. You may change this function directly via this
property.

	
fn_heating

	The heating function. You may change this function directly via this
property.

	
class underworld.systems.StokesSolver(stokesSLE, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

The Block Stokes Schur Complement Solver:
This solves the saddle-point system

\[\begin{split}\begin{bmatrix} K & G \\ G^T & C \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix}f \\ h \end{bmatrix}\end{split}\]

via a Schur complement method.

We first solve:

(1)\[S p= G^T K^{-1} f - h,\]

where \(S = G^T K^{-1} G-C\)

Then we backsolve for the velocity:

(2)\[K u = f - G p.\]

The effect of \(K^{-1}\) in (1) is obtained via a KSPSolve in PETSc.
This has the prefix ‘A11’ (often called the ‘inner’ solve)

The solve in (1) for the pressure has prefix ‘scr’.

Assuming the returned solver is called ‘solver’, it is possible to configure
these solves individually via the solver.options.A11 and
solver.options.scr dictionaries.

Try help(solver.options.A11) for some details.

Common configurations are provided via the set_inner_method() method.

help(solver.set_inner_method) for more.

For more advanced configurations use the
solver.options.A11/scr dictionaries directly.

help(solver.options) to see more.

	
set_inner_method(solve_type='mg')

	Configure velocity/inner solver (A11 PETSc prefix).

Available options below. Note that associated solver software
(for example mumps) must be installed.

	mg : Geometric multigrid (default).

	nomg : Disables multigrid.

	lu : LU direct solver (serial only).

	mumps : MUMPS parallel direct solver.

	superludist : SuperLU parallel direct solver.

	superlu : SuperLU direct solver (serial only).

	
set_mg_levels(levels)

	Set the number of multigrid levels manually.
It is set automatically by default.

	
set_penalty(penalty)

	By setting the penalty, the Augmented Lagrangian Method is used as the solve.
This method is not recommended for normal use as there is additional memory and cpu overhead.
This method can often help improve convergence issues for problems with large viscosity
contrasts that are having trouble converging.

A penalty of roughly 0.1 of the maximum viscosity contrast is not a bad place
to start as a rule of thumb. (check notes/paper)

	
solve(nonLinearIterate=None, nonLinearTolerance=0.01, nonLinearKillNonConvergent=False, nonLinearMinIterations=1, nonLinearMaxIterations=500, callback_post_solve=None, print_stats=False, reinitialise=True, **kwargs)

	Solve the stokes system

	Parameters

	
	nonLinearIterate (bool) – True will perform non linear iterations iterations, False (or 0) will not

	nonLinearTolerance (float, Default=1.0e-2) – Relative tolerance criterion for the change in the velocity field

	nonLinearMaxIterations (int, Default=500) – Maximum number of non linear iteration to perform

	callback_post_sovle (func, Default=None) – Optional callback function to be performed at the end of a linear solve iteration.
Commonly this will be used to perform operations between non linear iterations, for example,
calibrating the pressure solution or removing the system null space.

	print_stats (bool, Default=False) – Print out solver iteration and timing counts per solver

	reinitialise (bool, Default=True,) – Rebuild the system discretisation storage (location matrix/petsc mats & vecs) and repopulate, if available,
the stokes voronio swarm before the system is solved.

	
class underworld.systems.SteadyStateDarcyFlow(pressureField, fn_diffusivity, fn_bodyforce=None, voronoi_swarm=None, conditions=[], velocityField=None, swarmVarVelocity=None, _removeBCs=True, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

This class provides functionality for a discrete representation
of the steady state darcy flow equation.

The class uses a standard Galerkin finite element method to
construct a system of linear equations which may then be solved
using an object of the underworld.system.Solver class.

The underlying element types are determined by the supporting
mesh used for the ‘pressureField’.

The strong form of the given boundary value problem, for \(f\),
\(q\) and \(h\) given, is

\[\begin{split}\begin{align}
q_i =& \kappa \, (-u_{,i} + S_i) & \\
q_{i,i} =& \: f & \text{ in } \Omega \\
u =& \: q & \text{ on } \Gamma_q \\
-q_i n_i =& \: h & \text{ on } \Gamma_h \\
\end{align}\end{split}\]

where,

	\(\kappa\) is the diffusivity, \(u\) is the pressure,

	\(S\) is a flow body-source, for example due to gravity,

	\(f\) is a source term, \(q\) is the Dirichlet condition, and

	\(h\) is a Neumann condition.

The problem boundary, \(\Gamma\), admits the decomposition
\(\Gamma=\Gamma_q\cup\Gamma_h\) where
\(\emptyset=\Gamma_q\cap\Gamma_h\). The equivalent weak form is:

\[-\int_{\Omega} w_{,i} \, q_i \, d \Omega = \int_{\Omega} w \, f \, d\Omega + \int_{\Gamma_h} w \, h \, d \Gamma\]

where we must find \(u\) which satisfies the above for all \(w\)
in some variational space.

	Parameters

	
	pressureField (underworld.mesh.MeshVariable) – The solution field for pressure.

	fn_diffusivity (underworld.function.Function) – The function that defines the diffusivity across the domain.

	fn_bodyforce (underworld.function.Function) – A function that defines the flow body-force across the domain,
for example gravity. Must be a vector. Optional.

	voronoi_swarm (underworld.swarm.Swarm) – A swarm with just one particle within each cell should be provided.
This avoids the evaluation of the velocity on nodes and inaccuracies
arising from diffusivity changes within cells.
If a swarm is provided, voronoi type numerical integration is
utilised. The provided swarm is used as the basis for the voronoi
integration. If no voronoi_swarm is provided, Gauss integration
is used.

	conditions (underworld.conditions.SystemCondition) – Numerical conditions to impose on the system. This should be supplied as
the condition itself, or a list object containing the conditions.

	velocityField (underworld.mesh.MeshVariable) – Solution field for darcy flow velocity. Optional.

	swarmVarVelocity (undeworld.swarm.SwarmVariable) – If a swarm variable is provided, the velocity calculated on the swarm will be stored.
This is the most representative velocity data object, as the velocity calculation occurs
on the swarm, away from mesh nodes. Optional.

Notes

Constructor must be called collectively by all processes.

	
fn_bodyforce

	The heating function. You may change this function directly via this
property.

	
fn_diffusivity

	The diffusivity function. You may change this function directly via this
property.

	
class underworld.systems.TimeIntegration(order, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

Abstract class for integrating numerical objects (fields, swarms, etc.) in time.

The integration algorithm is a modified Runge Kutta method that only evaluates
midpoint information varying in space - using only the present timestep solution.
The order of the integration used can be 1,2,4

	Parameters

	order (int {1,2,4}) – Defines the numerical order ‘in space’ of the Runge Kutta like integration scheme.

	
dt

	Time integrator timestep size.

	
time

	Time integrator time value.

	
class underworld.systems.AdvectionDiffusion(phiField, phiDotField, velocityField, fn_diffusivity, fn_sourceTerm=None, conditions=[], _allow_non_q1=False, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

This class provides functionality for a discrete representation
of an advection-diffusion equation.

The class uses the Streamline Upwind Petrov Galerkin SUPG method
to integrate through time.

\[\frac{\partial\phi}{\partial t} + {\bf u } \cdot \nabla \phi= \nabla { (k \nabla \phi) } + H\]

	Parameters

	
	phiField (underworld.mesh.MeshVariable) – The concentration field, typically the temperature field

	phiDotField (underworld.mesh.MeshVariable) – A MeshVariable that defines the initial time derivative of the phiField.
Typically 0 at the beginning of a model, e.g. phiDotField.data[:]=0
When using a phiField loaded from disk one should also load the phiDotField to ensure
the solving method has the time derivative information for a smooth restart.
No dirichlet conditions are required for this field as the phiField degrees of freedom
map exactly to this field’s dirichlet conditions, the value of which ought to be 0
for constant values of phi.

	velocityField (underworld.mesh.MeshVariable) – The velocity field.

	fn_diffusivity (underworld.function.Function) – A function that defines the diffusivity within the domain.

	fn_sourceTerm (underworld.function.Function) – A function that defines the heating within the domain. Optional.

	conditions (underworld.conditions.SystemCondition) – Numerical conditions to impose on the system. This should be supplied as
the condition itself, or a list object containing the conditions.

Notes

Constructor must be called by collectively all processes.

	
get_max_dt()

	Returns a numerically stable timestep size for the current system.
Note that as a default, this method returns a value one half the
size of the Courant timestep.

	Returns

	The timestep size.

	Return type

	float

	
integrate(dt)

	Integrates the advection diffusion system through time, dt
Must be called collectively by all processes.

	Parameters

	dt (float) – The timestep interval to use

	
class underworld.systems.SwarmAdvector(velocityField, swarm, order=2, **kwargs)

	Bases: underworld.systems._timeintegration.TimeIntegration

Objects of this class advect a swarm through time using
the provided velocity field.

	Parameters

	
	velocityField (underworld.mesh.MeshVariable) – The MeshVariable field used for evaluating the velocity field that advects the swarm particles

	swarm (underworld.swarm.Swarm) – Particle swarm that will be advected by the given velocity field

	
integrate(dt, update_owners=True)

	Integrate the associated swarm in time, by dt, using the velocityfield that is associated with this class

	Parameters

	
	dt (double) – The timestep to use in the intergration

	update_owners (bool) – If this is set to False, particle ownership (which element owns a
particular particle) is not updated after advection. This is often
necessary when both the mesh and particles are advecting
simutaneously.

Example

>>> import underworld as uw
>>> import numpy as np
>>> from underworld import function as fn
>>> dim=2;
>>> elementMesh = uw.mesh.FeMesh_Cartesian(elementType="Q1/dQ0", elementRes=(9,9), minCoord=(-1.,-1.), maxCoord=(1.,1.))
>>> velocityField = uw.mesh.MeshVariable(mesh=elementMesh, nodeDofCount=dim)
>>> swarm = uw.swarm.Swarm(mesh=elementMesh)
>>> particle = np.zeros((1,2))
>>> particle[0] = [0.2,-0.2]
>>> swarm.add_particles_with_coordinates(particle)
array([0], dtype=int32)
>>> velocityField.data[:]=[1.0,1.0]
>>> swarmAdvector = uw.systems.SwarmAdvector(velocityField=velocityField, swarm=swarm, order=2)
>>> dt=swarmAdvector.get_max_dt()
>>> swarmAdvector.integrate(dt)
>>> np.allclose(swarm.particleCoordinates.data[0], [0.27856742, -0.12143258], rtol=1e-4)
True

 underworld.systems.sle module

underworld.systems.sle module

Module Summary

classes:

	underworld.systems.sle.ConstitutiveMatrixTerm

	

	underworld.systems.sle.PreconditionerMatrixTerm

	

	underworld.systems.sle.AssembledVector

	Vector object, generally assembled as a result of the FEM framework.

	underworld.systems.sle.AssemblyTerm

	

	underworld.systems.sle.AssembledMatrix

	Matrix object, generally assembled as a result of the FEM framework.

	underworld.systems.sle.VectorAssemblyTerm

	

	underworld.systems.sle.MatrixAssemblyTerm_NA_i__NB_i__Fn

	

	underworld.systems.sle.LumpedMassMatrixVectorTerm

	

	underworld.systems.sle.VectorAssemblyTerm_NA_i__Fn_i

	

	underworld.systems.sle.GradientStiffnessMatrixTerm

	

	underworld.systems.sle.MatrixAssemblyTerm_NA__NB__Fn

	

	underworld.systems.sle.EqNumber

	The SolutionVector manages the numerical solution vectors used by Underworld’s equation systems.

	underworld.systems.sle.AdvDiffResidualVectorTerm

	

	underworld.systems.sle.SolutionVector

	The SolutionVector manages the numerical solution vectors used by Underworld’s equation systems.

	underworld.systems.sle.MatrixAssemblyTerm

	

	underworld.systems.sle.VectorSurfaceAssemblyTerm_NA__Fn__ni

	Build an assembly term for a surface integral.

	underworld.systems.sle.VectorAssemblyTerm_NA__Fn

	

	underworld.systems.sle.VectorAssemblyTerm_NA_j__Fn_ij

	Build an assembly term for a spatial gradient, used for the viscoelastic force term.

Module Details

classes:

	
class underworld.systems.sle.ConstitutiveMatrixTerm(fn_visc1=None, fn_visc2=None, fn_director=None, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.MatrixAssemblyTerm

	
class underworld.systems.sle.PreconditionerMatrixTerm(assembledObject=None, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.MatrixAssemblyTerm

	
class underworld.systems.sle.AssembledVector(meshVariable, eqNum, **kwargs)

	Bases: underworld.systems.sle._svector.SolutionVector

Vector object, generally assembled as a result of the FEM
framework.

See parent class for parameters.

	
petscVector

	Underlying PETSc vector object.

	Type

	petscVector (swig petsc vector)

	
class underworld.systems.sle.AssemblyTerm(integrationSwarm, extraInfo=None, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

	
class underworld.systems.sle.AssembledMatrix(rowVector, colVector, rhs=None, rhs_T=None, assembleOnNodes=False, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

Matrix object, generally assembled as a result of the FEM
framework.

	Parameters

	
	meshVariableRow (underworld.mesh.MeshVariable) – MeshVariable object for matrix row.

	meshVariableCol (underworld.mesh.MeshVariable) – MeshVariable object for matrix column.

	
class underworld.systems.sle.VectorAssemblyTerm(assembledObject, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.AssemblyTerm

	
class underworld.systems.sle.MatrixAssemblyTerm_NA_i__NB_i__Fn(fn, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.MatrixAssemblyTerm

	
class underworld.systems.sle.LumpedMassMatrixVectorTerm(assembledObject, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.VectorAssemblyTerm

	
class underworld.systems.sle.VectorAssemblyTerm_NA_i__Fn_i(fn, mesh=None, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.VectorAssemblyTerm

	
class underworld.systems.sle.GradientStiffnessMatrixTerm(assembledObject=None, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.MatrixAssemblyTerm

	
class underworld.systems.sle.MatrixAssemblyTerm_NA__NB__Fn(fn, mesh, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.MatrixAssemblyTerm

	
class underworld.systems.sle.EqNumber(meshVariable, removeBCs=True, **kwargs)

	Bases: underworld._stgermain.StgClass

The SolutionVector manages the numerical solution vectors used by Underworld’s equation systems.
Interface between meshVariables and systems.

	Parameters

	meshVariable (uw.mesh.MeshVariable) – MeshVariable object for which this equation numbering corresponds.

Example

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4,4), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> tField = uw.mesh.MeshVariable(linearMesh, 1)
>>> teqNum = uw.systems.sle.EqNumber(tField)

	
class underworld.systems.sle.AdvDiffResidualVectorTerm(velocityField, diffusivity, sourceTerm, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.VectorAssemblyTerm

	
class underworld.systems.sle.SolutionVector(meshVariable, eqNumber, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

The SolutionVector manages the numerical solution vectors used by Underworld’s equation systems.
Interface between meshVariables and systems.

	Parameters

	
	meshVariable (underworld.mesh.MeshVariable) – MeshVariable object for which this SLE vector corresponds.

	eqNumber (underworld.systems.sle.EqNumber) – Equation numbering object corresponding to this vector.

Example

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4,4), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> tField = uw.mesh.MeshVariable(linearMesh, 1)
>>> eqNum = uw.systems.sle.EqNumber(tField)
>>> sVector = uw.systems.sle.SolutionVector(tField, eqNum)

	
class underworld.systems.sle.MatrixAssemblyTerm(assembledObject=None, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.AssemblyTerm

	
class underworld.systems.sle.VectorSurfaceAssemblyTerm_NA__Fn__ni(nbc, integrationSwarm=None, surfaceGaussPoints=2, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.VectorAssemblyTerm

Build an assembly term for a surface integral.

	Parameters

	
	nbc (underworld.conditions.NeumannCondition) – See uw.conditions.NeumannCondition for details

	integrationSwarm (underworld.swarm.GaussBorderIntegrationSwarm) – Optional integration swarm to be used for numerical integration.

	surfaceGaussPoints (int) – The number of quadrature points per element face to use in surface
integration. Will be used to create a GaussBorderIntegrationSwarm in
the case the ‘swarm’ input is ‘None’.

	
class underworld.systems.sle.VectorAssemblyTerm_NA__Fn(fn, mesh=None, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.VectorAssemblyTerm

	
class underworld.systems.sle.VectorAssemblyTerm_NA_j__Fn_ij(fn, mesh=None, **kwargs)

	Bases: underworld.systems.sle._assemblyterm.VectorAssemblyTerm

Build an assembly term for a spatial gradient, used for the viscoelastic force term.

	Parameters

	
	fn (underworld.function.Function) – Function is a vector of size 3 (dim=2) or 6 (dim=3) representing a symetric tensor

	mesh (uw.mesh.FeMesh_Cartesian) –

 underworld.timing module

underworld.timing module

This module implements some high level timing operations for Underworld,
allowing users to determine how walltime is divided between different
Underworld API calls. Note that this module only records timing
for Underworld API calls, and has no way of knowing how much time has
been spent elsewhere (such as numpy, scipy etc). The total runtime
is also recorded which gives users an indication of how much time
is spent outside Underworld.

Timing routines enabled by this module should introduce negligible
computational overhead.

Only the root process records timing information.

Note that to utilise timing routines, you must first set the
‘UW_ENABLE_TIMING’ environment variable, and this must be done
before you call import underworld.

Example

>>> import os
>>> os.environ["UW_ENABLE_TIMING"] = "1"
>>> import underworld as uw
>>> uw.timing.start()
>>> someMesh = uw.mesh.FeMesh_Cartesian()
>>> with someMesh.deform_mesh():
... someMesh.data[0] = [0.1,0.1]
>>> uw.timing.stop()
>>> # uw.print_table() # This will print the data.
>>> # Commented out as not doctest friendly.

Module Summary

functions:

	underworld.timing.log_result

	Allows the user to manually add entries to data.

	underworld.timing.reset

	Reset timing data.

	underworld.timing.get_data

	Returns dict with timing data.

	underworld.timing.stop

	Call this function to stop recording timing data.

	underworld.timing.print_table

	Print timing results to stdout or to a provided file.

	underworld.timing.start

	Call this function to start recording timing data.

Module Details

functions:

	
underworld.timing.log_result(time, name)

	Allows the user to manually add entries to data.

	Parameters

	
	time (float) – Time spent.

	name (str) – Name to record to dataset. Note that the current stack information
is generated internally and recorded.

	
underworld.timing.reset()

	Reset timing data. Note that this function calls
stop(), and the user must call start() to resume
recording timing data.

	
underworld.timing.get_data(group_by='line_routine')

	Returns dict with timing data.

	Parameters

	group_by (str) – Reported timing data is grouped according to the following options:
“line” : Calling line of code.
“routine” : Class routine.
“line_routine”: Line&routine form an individual timing group.

	
underworld.timing.stop()

	Call this function to stop recording timing data.
Note that this is automatically called when
print_table() is called.

	
underworld.timing.print_table(group_by='line_routine', sort_by='total', display_fraction=0.95, float_precision='.3f', output_file=None, **kwargs)

	Print timing results to stdout or to a provided file. Call this function
stops timing.

	Parameters

	
	group_by (str) – See get_data() function

	sort_by (str) – Data is sorted according to:
“total” : Total time allocated to any group.
“average” : Average time attributed to any group

	display_fraction (float) – Set this option to cull insignificant (short time) results.

	output_file (str) – File to record table to. If none provided, outputs to stdout.

	**kwargs – Any extra kwargs are passed to tabulate module (if installed).
This allows you to tweak the output format. Consule the tabulate
module instructions for details.

	
underworld.timing.start()

	Call this function to start recording timing data.

 underworld.conditions module

underworld.conditions module

Implementation relating to system conditions.

Module Summary

classes:

	underworld.conditions.NeumannCondition

	This class defines Neumann conditions for a differential equation.

	underworld.conditions.DirichletCondition

	The DirichletCondition class provides the required functionality to imposed Dirichlet conditions on your differential equation system.

	underworld.conditions.SystemCondition

	

Module Details

classes:

	
class underworld.conditions.NeumannCondition(variable, indexSetsPerDof=None, fn_flux=None)

	Bases: underworld.conditions._conditions.SystemCondition

This class defines Neumann conditions for a differential equation.
Neumann conditions specifiy a field’s flux along a boundary.

As such the user specifices the field’s flux as a uw.Function and the nodes where this flux
is to be applied - similar to uw.conditions.DirichletCondtion

	Parameters

	
	fn_flux (underworld.function.Function) – Function which determines flux values.

	variable (underworld.mesh.MeshVariable) – The variable that describes the discretisation (mesh & DOFs) for ‘indexSetsPerDof’

	indexSetsPerDof (list, tuple, IndexSet) – The index set(s) which flag nodes/DOFs as Neumann conditions.
Note that the user must provide an index set for each degree of
freedom of the variable above. So for a vector variable of rank 2 (say Vx & Vy),
two index sets must be provided (say VxDofSet, VyDofSet).

Example

Basic setup and usage of Neumann conditions:

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4,4), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> velocityField = uw.mesh.MeshVariable(linearMesh, 2)
>>> velocityField.data[:] = [0.,0.] # set velocity zero everywhere, which will of course include the boundaries.
>>> myFunc = (uw.function.coord()[1],0.0)
>>> bottomWall = linearMesh.specialSets["MinJ_VertexSet"]
>>> tractionBC = uw.conditions.NeumannCondition(variable=velocityField, fn_flux=myFunc, indexSetsPerDof=(None,bottomWall))

	
fn_flux

	Get the underworld.Function that defines the flux

	
class underworld.conditions.DirichletCondition(variable, indexSetsPerDof)

	Bases: underworld.conditions._conditions.SystemCondition

The DirichletCondition class provides the required functionality to imposed Dirichlet
conditions on your differential equation system.

The user is simply required to flag which nodes/DOFs should be considered by the system
to be a Dirichlet condition. The values at the Dirichlet nodes/DOFs is then left
untouched by the system.

	Parameters

	
	variable (underworld.mesh.MeshVariable) – This is the variable for which the Dirichlet condition applies.

	indexSetsPerDof (list, tuple, IndexSet) – The index set(s) which flag nodes/DOFs as Dirichlet conditions.
Note that the user must provide an index set for each degree of
freedom of the variable. So for a vector variable of rank 2 (say Vx & Vy),
two index sets must be provided (say VxDofSet, VyDofSet).

Notes

Note that it is necessary for the user to set the required value on the variable, possibly
via the numpy interface.

Constructor must be called collectively all processes.

Example

Basic setup and usage of Dirichlet conditions:

>>> linearMesh = uw.mesh.FeMesh_Cartesian(elementType='Q1/dQ0', elementRes=(4,4), minCoord=(0.,0.), maxCoord=(1.,1.))
>>> velocityField = uw.mesh.MeshVariable(linearMesh, 2)
>>> velocityField.data[:] = [0.,0.] # set velocity zero everywhere, which will of course include the boundaries.
>>> IWalls = linearMesh.specialSets["MinI_VertexSet"] + linearMesh.specialSets["MaxI_VertexSet"] # get some wall index sets
>>> JWalls = linearMesh.specialSets["MinJ_VertexSet"] + linearMesh.specialSets["MaxJ_VertexSet"]
>>> freeSlipBC = uw.conditions.DirichletCondition(velocityField, (IWalls,JWalls)) # this will give free slip sides
>>> noSlipBC = uw.conditions.DirichletCondition(velocityField, (IWalls+JWalls,IWalls+JWalls)) # this will give no slip sides

	
class underworld.conditions.SystemCondition(variable, indexSetsPerDof)

	Bases: underworld._stgermain.StgCompoundComponent

	
indexSetsPerDof

	See class constructor for details.

	
variable

	See class constructor for details.

 glucifer module

glucifer module

The glucifer module provides visualisation algorithms for Underworld.

Visualisation data is generated in parallel, with each processes generating the
necessary data for its part of the domain. This data is written into a data file.

Actual rendering is performed in serial using the LavaVu rendering engine.

glucifer provides many flexible rendering options, including client-server based
operation for remote usage. Users may choose to renderer outputs to raster images,
or save a database file for later rendering. For those working in the Jupyter
environment, glucifer will inline rendered images or even interactive webgl
frames (still experimental).

Module Summary

submodules:

	glucifer.objects module

classes:

	glucifer.Store

	The Store class provides a database which stores gLucifer drawing objects as they are rendered in figures.

	glucifer.Figure

	The Figure class provides a window within which gLucifer drawing objects may be rendered.

Module Details

classes:

	
class glucifer.Store(filename=None, split=False, compress=True, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

The Store class provides a database which stores gLucifer drawing objects
as they are rendered in figures. It also provides associated routines for saving
and reloading this database to external files

In addition to parameter specification below, see property docstrings for
further information.

	Parameters

	
	filename (str) – Filename to use for a disk database, default is to create a temporary database filename.

	split (bool) – Set to true to write a separate database file for each timestep visualised

	view (bool) – Set to true and pass filename if loading a saved database for revisualisation

	compress (bool) – Set to true to enable database compression.

Example

Create a database:

>>> import glucifer
>>> store = glucifer.Store()

Optionally provide a filename so you don’t need to call save later (no extension required)

>>> store = glucifer.Store('myvis')

Pass to figures when creating them
(Providing a name allows you to revisualise the figure from the name)

>>> fig = glucifer.Figure(store, name="myfigure")

When figures are rendered with show() or save(imgname), they are saved to storage
If you don’t need to render an image but still want to store the figure to view later,
just call save() without a filename

>>> fig.save()

Save the database (only necessary if no filename provided when created)

>>> dbfile = store.save("myvis")

	
empty()

	Empties all the cached drawing objects

	
save(filename)

	Saves the database to the provided filename.

	Parameters

	filename (str) – Filename to save file to. May include an absolute or relative path.

	
class glucifer.Figure(store=None, name=None, figsize=None, boundingBox=None, facecolour='white', edgecolour='black', title='', axis=False, quality=1, *args, **kwargs)

	Bases: dict

The Figure class provides a window within which gLucifer drawing objects
may be rendered. It also provides associated routines for image generation
and visualisation.

In addition to parameter specification below, see property docstrings for
further information.

	Parameters

	
	store (glucifer.Store) – Database to collect visualisation data, this may be shared among figures
to collect their data into a single file.

	name (str) – Name of this figure, optional, used for revisualisation of stored figures.

	resolution (tuple) – Image resolution provided as a tuple.

	boundingBox (tuple) – Tuple of coordinate tuples defining figure bounding box.
For example ((0.1,0.1), (0.9,0.9))

	facecolour (str) – Background colour for figure.

	edgecolour (str) – Edge colour for figure.

	title (str) – Figure title.

	axis (bool) – Bool to determine if figure axis should be drawn.

	quality (unsigned) – Antialiasing oversampling quality. For a value of 2, the image will be
rendered at twice the resolution, and then downsampled. Setting
this to 1 disables antialiasing, values higher than 3 are not recommended..

	properties (str) – Further properties to set on the figure.

Example

Create a figure:

>>> import glucifer
>>> fig = glucifer.Figure()

We need a mesh

>>> import underworld as uw
>>> mesh = uw.mesh.FeMesh_Cartesian()

Add drawing objects:

>>> fig.append(glucifer.objects.Surface(mesh, 1.))

Draw image. Note that if called from within a Jupyter notebook, image
will be rendered inline. Otherwise, image will be saved to disk.

>>> fig.show()

Save the image

>>> imgfile = fig.save("test_image")

Clean up:

>>> if imgfile:
... import os;
... os.remove(imgfile)

	
append(drawingObject)

	Add a drawing object to the figure.

	Parameters

	drawingObject (glucifer.objects.Drawing) – The drawing object to add to the figure

	
axis

	Axis enabled if true.

	Type

	axis

	
close_viewer()

	Close the viewer.

	
edgecolour

	colour of figure border.

	Type

	edgecolour

	
facecolour

	colour of face background.

	Type

	facecolour

	
objects

	list of objects to be drawn within the figure.

	Type

	objects

	
open_viewer(args=[], background=True)

	Open the external viewer.

	
properties

	visual properties of viewport, passed to LavaVu to control
rendering output of figure.

When using the property setter, new properties are set, overwriting any duplicate
keys but keeping existing values otherwise.

	Type

	properties (dict)

	
resolution

	size of window in pixels.

	Type

	resolution (tuple(int,int))

	
save(filename=None, size=(0, 0), type='Image')

	Saves the generated image to the provided filename or the figure to the database.

	Parameters

	
	filename (str) – Filename to save file to. May include an absolute or relative path.

	(tuple(int,int)) (size) – If omitted, simply saves the figure data without generating an image

	type (str) – Type of visualisation to save (‘Image’ or ‘WebGL’).

	Returns

	filename – The final filename (including extension) used to save the image will be returned. Note
that only the root process will return this filename. All other processes will not return
anything.

	Return type

	str

	
script(cmd=None)

	Append to or get contents of the saved script.

	Parameters

	cmd (str) – Command to add to script.

	
send_command(cmd, retry=True)

	Run command on an open viewer instance.

	Parameters

	cmd (str) – Command to send to open viewer.

	
show(type='Image')

	Shows the generated image inline within an ipython notebook.

	Parameters

	
	type (str) – Type of visualisation to display (‘Image’ or ‘WebGL’).

	IPython is installed, displays the result image or WebGL content inline (If) –

	IPython is not installed, this method will call the default image/web (If) –

	routines to save the result with a default filename in the current directory (output) –

	
static show_grid(*rows)

	Shows a set of Figure objects in a grid. Note that this method
currently only supports rendering images within a Jupyter Notebook,
and saving gridded images to a file is not currently supported.

	Parameters

	rows (set of tuples) – Each provided tuple represents a row of Figures,
and should only contain Figure class objects.

Example

Create a bunch of figures:
>>> import glucifer
>>> fig1 = glucifer.Figure()
>>> fig2 = glucifer.Figure()
>>> fig3 = glucifer.Figure()
>>> fig4 = glucifer.Figure()
>>> fig5 = glucifer.Figure()
>>> fig6 = glucifer.Figure()

We need a mesh
>>> import underworld as uw
>>> mesh = uw.mesh.FeMesh_Cartesian()

Add drawing objects as usual:
>>> r = uw.function.input()
>>> fig1.append(glucifer.objects.Surface(mesh, 1.))
>>> fig2.append(glucifer.objects.Mesh(mesh))
>>> fig3.append(glucifer.objects.Mesh(mesh, nodeNumbers=True))
>>> fig4.append(glucifer.objects.Surface(mesh, r[0]))
>>> fig5.append(glucifer.objects.Surface(mesh, r[1]))
>>> fig6.append(glucifer.objects.VectorArrows(mesh, r))

Draw images in a grid. Note that in a Jupyter notebook,
this will render the image within the notebook, though it will
not be rendered in this example. Also note that show_grid()
is a static method, and so we call it directly as below (instead
of as a method on a Figure instance).

>>> glucifer.Figure.show_grid((fig1,fig2,fig3),
... (fig4,fig5,fig6))
<IPython.core.display.HTML object>

The above should generate a 2x3 (row x col) grid. For a 3x2 grid
we would instead call:

>>> glucifer.Figure.show_grid((fig1,fig2),
... (fig3,fig4),
... (fig5,fig6))
<IPython.core.display.HTML object>

	
step

	current timestep

	Type

	step (int)

	
title

	a title for the image.

	Type

	title

	
viewer(new=False, *args, **kwargs)

	Return viewer instance.

	Parameters

	new (boolean) – If True, a new viewer instance will always be returned
Otherwise the existing instance will be used if available

	
window(*args, **kwargs)

	Open an inline viewer.

This returns a new LavaVu instance to display the figure
and opens it as an interactive viewing window.

 glucifer.objects module

glucifer.objects module

Module Summary

classes:

	glucifer.objects.ColourBar

	The ColourBar drawing object draws a colour bar for the provided colour map.

	glucifer.objects.VectorArrows

	This drawing object class draws vector arrows corresponding to the provided vector field.

	glucifer.objects.Points

	This drawing object class draws a swarm of points.

	glucifer.objects.Sampler

	The Sampler class provides functionality for sampling a field at a number of provided vertices.

	glucifer.objects.Surface

	This drawing object class draws a surface using the provided scalar field.

	glucifer.objects.Volume

	This drawing object class draws a volume using the provided scalar field.

	glucifer.objects.Mesh

	This drawing object class draws a mesh.

	glucifer.objects.Contours

	This drawing object class draws contour lines in a cross section using the provided scalar field.

	glucifer.objects.ColourMap

	The ColourMap class provides functionality for mapping colours to numerical values.

	glucifer.objects.CrossSection

	This drawing object class defines a cross-section plane, derived classes plot data over this cross section

	glucifer.objects.Drawing

	This is the base class for all drawing objects but can also be instantiated as is for direct/custom drawing.

	glucifer.objects.IsoSurface

	This drawing object class draws an isosurface using the provided scalar field.

Module Details

classes:

	
class glucifer.objects.ColourBar(colourMap, *args, **kwargs)

	Bases: glucifer.objects.Drawing

The ColourBar drawing object draws a colour bar for the provided colour map.

	Parameters

	colourMap (glucifer.objects.ColourMap) – Colour map for which the colour bar will be drawn.

	
class glucifer.objects.VectorArrows(mesh, fn, resolution=[16, 16, 16], autoscale=True, *args, **kwargs)

	Bases: glucifer.objects._GridSampler3D

This drawing object class draws vector arrows corresponding to the provided vector field.

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – Mesh over which vector arrows are rendered.

	fn (underworld.function.Function) – Function used to determine vectors to render.
Function should return a vector of floats/doubles of appropriate
dimensionality.

	arrowHead (float) – The size of the head of the arrow.
If > 1.0 is ratio to arrow radius
If in range [0.,1.] is ratio to arrow length

	scaling (float) – Scaling for entire arrow.

	autoscale (bool) – Scaling based on field min/max

	glyphs (int) – Type of glyph to render for vector arrow.
0: Line, 1 or more: 3d arrow, higher number => better quality.

	resolution (list(unsigned)) – Number of samples in the I,J,K directions.

	
class glucifer.objects.Points(swarm, fn_colour=None, fn_mask=None, fn_size=None, colourVariable=None, colourBar=True, *args, **kwargs)

	Bases: glucifer.objects.Drawing

This drawing object class draws a swarm of points.

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	swarm (underworld.swarm.Swarm) – Swarm which provides locations for point rendering.

	fn_colour (underworld.function.Function) – Function used to determine colour to render particle.
This function should return float/double values.

	fn_mask (underworld.function.Function) – Function used to determine if a particle should be rendered.
This function should return bool values.

	fn_size (underworld.function.Function) – Function used to determine size to render particle.
This function should return float/double values.

	
class glucifer.objects.Sampler(mesh, fn, *args, **kwargs)

	Bases: glucifer.objects.Drawing

The Sampler class provides functionality for sampling a field at
a number of provided vertices.

	Parameters

	
	vertices (list,array) – List of vertices to sample the field at, either a list or numpy array

	mesh (underworld.mesh.FeMesh) – Mesh over which the values are sampled

	fn (underworld.function.Function) – Function used to get the sampled values.

	
class glucifer.objects.Surface(mesh, fn, drawSides='xyzXYZ', colourBar=True, onMesh=True, *args, **kwargs)

	Bases: glucifer.objects.CrossSection

This drawing object class draws a surface using the provided scalar field.

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – Mesh over which cross section is rendered.

	fn (underworld.function.Function) – Function used to determine values to render.

	drawSides (str) – Sides (x,y,z,X,Y,Z) for which the surface should be drawn.
For example, “xyzXYZ” would render the provided function across
all surfaces of the domain in 3D. In 2D, this object always renders
across the entire domain.

	
class glucifer.objects.Volume(mesh, fn, resolution=[64, 64, 64], colourBar=True, *args, **kwargs)

	Bases: glucifer.objects._GridSampler3D

This drawing object class draws a volume using the provided scalar field.

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – Mesh over which object is rendered.

	fn (underworld.function.Function) – Function used to determine colour values.
Function should return a vector of floats/doubles of appropriate
dimensionality.

	resolution (list(unsigned)) – Number of samples in the I,J,K directions.

	
class glucifer.objects.Mesh(mesh, nodeNumbers=False, segmentsPerEdge=1, *args, **kwargs)

	Bases: glucifer.objects.Drawing

This drawing object class draws a mesh.

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – Mesh to render.

	nodeNumbers (bool) – Bool to determine whether global node numbers should be rendered.

	segmentsPerEdge (unsigned) – Number of segments to render per cell/element edge. For higher
order mesh, more segments are useful to render mesh curvature correctly.

	
class glucifer.objects.Contours(mesh, fn, labelFormat='', unitScaling=1.0, interval=0.33, limits=(0.0, 0.0), *args, **kwargs)

	Bases: glucifer.objects.CrossSection

This drawing object class draws contour lines in a cross section using the provided scalar field.

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – Mesh over which cross section is rendered.

	fn (underworld.function.Function) – Function used to determine values to render.

	labelFormat (str) – Format string (printf style) used to print a contour label, eg: ” %g K”

	unitScaling – Scaling factor to apply to value when printing labels

	interval (float) – Interval between contour lines

	limits (tuple, list) – User defined minimum and maximum limits for the contours. Provided as a
tuple/list of floats (minValue, maxValue). If none is provided, the
limits will be determined automatically.

	
class glucifer.objects.ColourMap(colours='diverge', valueRange=None, logScale=False, discrete=False, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

The ColourMap class provides functionality for mapping colours to numerical
values.

	Parameters

	
	colours (str, list) – List of colours to use for drawing object colour map. Provided as a string
or as a list of strings. Example, “red blue”, or [“red”, “blue”]

	valueRange (tuple, list) – User defined value range to apply to colour map. Provided as a
tuple of floats (minValue, maxValue). If none is provided, the
value range will be determined automatically.

	logScale (bool) – Bool to determine if the colourMap should use a logarithmic scale.

	discrete (bool) – Bool to determine if a discrete colour map should be used.
Discrete colour maps do not interpolate between colours and instead
use nearest neighbour for colouring.

	
class glucifer.objects.CrossSection(mesh, fn, crossSection='', resolution=[100, 100, 1], colourBar=True, offsetEdges=None, onMesh=False, *args, **kwargs)

	Bases: glucifer.objects.Drawing

This drawing object class defines a cross-section plane, derived classes
plot data over this cross section

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – Mesh over which cross section is rendered.

	fn (underworld.function.Function) – Function used to determine values to render.

	crossSection (str) – Cross Section definition, eg. z=0.

	resolution (list(unsigned)) – Surface sampling resolution.

	onMesh (boolean) – Sample the mesh nodes directly, as opposed to sampling across a regular grid. This flag
should be used in particular where a mesh has been deformed.

	
crossSection

	Cross Section definition, eg;: z=0.

	Type

	crossSection (str)

	
class glucifer.objects.Drawing(name=None, colours=None, colourMap='', colourBar=False, valueRange=None, logScale=False, discrete=False, *args, **kwargs)

	Bases: underworld._stgermain.StgCompoundComponent

This is the base class for all drawing objects but can also be instantiated
as is for direct/custom drawing.

Note that the defaults here are often overridden by the child objects.

	Parameters

	
	colours (str, list.) – See ColourMap class docstring for further information

	colourMap (glucifer.objects.ColourMap) – A ColourMap object for the object to use.
This should not be specified if ‘colours’ is specified.

	opacity (float) – Opacity of object. If provided, must take values from 0. to 1.

	colourBar (bool) – Bool to determine if a colour bar should be rendered.

	valueRange (tuple, list) – See ColourMap class docstring for further information

	logScale (bool) – See ColourMap class docstring for further information

	discrete (bool) – See ColourMap class docstring for further information

	
colourBar

	return colour bar of drawing object, create if
doesn’t yet exist.

	Type

	colourBar (object)

	
colourMap

	return colour map of drawing object

	Type

	colourMap (object)

	
label(text, pos=(0.0, 0.0, 0.0), font='sans', scaling=1)

	Writes a label string

	Parameters

	
	text (str) – label text.

	pos (tuple) – X,Y,Z position to place the label.

	font (str) – label font (small/fixed/sans/serif/vector).

	scaling (float) – label font scaling (for “vector” font only).

	
line(start=(0.0, 0.0, 0.0), end=(0.0, 0.0, 0.0))

	Draws a line

	Parameters

	
	start (tuple) – X,Y,Z position to start line

	end (tuple) – X,Y,Z position to end line

	
point(pos=(0.0, 0.0, 0.0))

	Draws a point

	Parameters

	pos (tuple) – X,Y,Z position to place the point

	
vector(position=(0.0, 0.0, 0.0), vector=(0.0, 0.0, 0.0))

	Draws a vector

	Parameters

	
	position (tuple) – X,Y,Z position to centre vector on

	vector (tuple) – X,Y,Z vector value

	
class glucifer.objects.IsoSurface(mesh, fn, fn_colour=None, resolution=[64, 64, 64], colourBar=True, isovalue=None, *args, **kwargs)

	Bases: glucifer.objects.Volume

This drawing object class draws an isosurface using the provided scalar field.

See parent class for further parameter details. Also see property docstrings.

	Parameters

	
	mesh (underworld.mesh.FeMesh) – Mesh over which object is rendered.

	fn (underworld.function.Function) – Function used to determine surface position.
Function should return a vector of floats/doubles.

	fn_colour (underworld.function.Function) – Function used to determine colour of surface.

	resolution (list(unsigned)) – Number of samples in the I,J,K directions.

	isovalue (float) – Isovalue to plot.

	isovalues (list of float) – List of multiple isovalues to plot.

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__add__() (underworld.container.IndexSet method)

 	(underworld.function.Function method)

 	__and__() (underworld.container.IndexSet method)

 	(underworld.function.Function method)

 	__contains__() (underworld.container.IndexSet method)

 	__deepcopy__() (underworld.container.IndexSet method)

 	__div__() (underworld.function.Function method)

 	__ge__() (underworld.function.Function method)

 	__getitem__() (underworld.function.Function method)

 	__gt__() (underworld.function.Function method)

 	__iadd__() (underworld.container.IndexSet method)

 	__iand__() (underworld.container.IndexSet method)

 	__init__() (underworld.container.ObjectifiedIndexSet method)

 	__ior__() (underworld.container.IndexSet method)

 	
 	__isub__() (underworld.container.IndexSet method)

 	__le__() (underworld.function.Function method)

 	__len__() (underworld.container.IndexSet method)

 	__lt__() (underworld.function.Function method)

 	__mul__() (underworld.function.Function method)

 	__neg__() (underworld.function.Function method)

 	__or__() (underworld.container.IndexSet method)

 	(underworld.function.Function method)

 	__pow__() (underworld.function.Function method)

 	__radd__() (underworld.function.Function method)

 	__rmul__() (underworld.function.Function method)

 	__rsub__() (underworld.function.Function method)

 	__sub__() (underworld.container.IndexSet method)

 	(underworld.function.Function method)

 	__xor__() (underworld.function.Function method)

A

 	
 	abs (class in underworld.function.math)

 	acos (class in underworld.function.math)

 	acosh (class in underworld.function.math)

 	add() (underworld.container.IndexSet method)

 	add_particles_with_coordinates() (underworld.swarm.Swarm method)

 	add_post_deform_function() (underworld.mesh.FeMesh method)

 	add_pre_deform_function() (underworld.mesh.FeMesh method)

 	add_variable() (underworld.mesh.FeMesh method)

 	(underworld.swarm.SwarmAbstract method)

 	addAll() (underworld.container.IndexSet method)

 	AdvDiffResidualVectorTerm (class in underworld.systems.sle)

 	
 	AdvectionDiffusion (class in underworld.systems)

 	AND() (underworld.container.IndexSet method)

 	antisymmetric (class in underworld.function.tensor)

 	append() (glucifer.Figure method)

 	asin (class in underworld.function.math)

 	asinh (class in underworld.function.math)

 	AssembledMatrix (class in underworld.systems.sle)

 	AssembledVector (class in underworld.systems.sle)

 	AssemblyTerm (class in underworld.systems.sle)

 	atan (class in underworld.function.math)

 	atanh (class in underworld.function.math)

 	axis (glucifer.Figure attribute)

B

 	
 	barrier() (in module underworld)

C

 	
 	clear() (underworld.container.IndexSet method)

 	close_viewer() (glucifer.Figure method)

 	ColourBar (class in glucifer.objects)

 	colourBar (glucifer.objects.Drawing attribute)

 	ColourMap (class in glucifer.objects)

 	colourMap (glucifer.objects.Drawing attribute)

 	conditional (class in underworld.function.branching)

 	configure() (underworld.systems.HeatSolver method)

 	constant (class in underworld.function.misc)

 	ConstitutiveMatrixTerm (class in underworld.systems.sle)

 	
 	Contours (class in glucifer.objects)

 	convert() (underworld.function.Function static method)

 	coord (in module underworld.function)

 	copy() (underworld.mesh.MeshVariable method)

 	cos (class in underworld.function.math)

 	cosh (class in underworld.function.math)

 	count (underworld.swarm.SwarmVariable attribute)

 	CrossSection (class in glucifer.objects)

 	crossSection (glucifer.objects.CrossSection attribute)

 	CustomException (class in underworld.function.exception)

D

 	
 	data (underworld.container.IndexSet attribute)

 	(underworld.mesh.FeMesh attribute)

 	(underworld.mesh.MeshVariable attribute)

 	(underworld.swarm.SwarmAbstract attribute)

 	(underworld.swarm.SwarmVariable attribute)

 	data_elementNodes (underworld.mesh.FeMesh attribute)

 	data_elgId (underworld.mesh.FeMesh attribute)

 	data_nodegId (underworld.mesh.FeMesh attribute)

 	data_shadow (underworld.swarm.SwarmVariable attribute)

 	
 	dataType (underworld.mesh.MeshVariable attribute)

 	(underworld.swarm.SwarmVariable attribute)

 	deform_mesh() (underworld.mesh.FeMesh method)

 	deform_swarm() (underworld.swarm.Swarm method)

 	deviatoric (class in underworld.function.tensor)

 	dimensionalise() (in module underworld.scaling)

 	DirichletCondition (class in underworld.conditions)

 	dot (class in underworld.function.math)

 	Drawing (class in glucifer.objects)

 	dt (underworld.systems.TimeIntegration attribute)

E

 	
 	edgecolour (glucifer.Figure attribute)

 	elementsDomain (underworld.mesh.FeMesh attribute)

 	elementsGlobal (underworld.mesh.FeMesh attribute)

 	elementsLocal (underworld.mesh.FeMesh attribute)

 	elementType (underworld.mesh.FeMesh attribute)

 	empty() (glucifer.Store method)

 	EqNumber (class in underworld.systems.sle)

 	
 	eqResiduals (underworld.systems.Stokes attribute)

 	erf (class in underworld.function.math)

 	erfc (class in underworld.function.math)

 	evaluate() (underworld.function.Function method)

 	(underworld.utils.Integral method)

 	evaluate_global() (underworld.function.Function method)

 	exp (class in underworld.function.math)

F

 	
 	facecolour (glucifer.Figure attribute)

 	FeMesh (class in underworld.mesh)

 	FeMesh_Cartesian (class in underworld.mesh)

 	FeMesh_IndexSet (class in underworld.mesh)

 	Figure (class in glucifer)

 	fn_bodyforce (underworld.systems.SteadyStateDarcyFlow attribute)

 	(underworld.systems.Stokes attribute)

 	fn_diffusivity (underworld.systems.SteadyStateDarcyFlow attribute)

 	(underworld.systems.SteadyStateHeat attribute)

 	
 	fn_flux (underworld.conditions.NeumannCondition attribute)

 	fn_gradient (underworld.mesh.MeshVariable attribute)

 	fn_heating (underworld.systems.SteadyStateHeat attribute)

 	fn_one_on_lambda (underworld.systems.Stokes attribute)

 	fn_particle_found() (underworld.swarm.Swarm method)

 	fn_source (underworld.systems.Stokes attribute)

 	fn_viscosity (underworld.systems.Stokes attribute)

 	Function (class in underworld.function)

 	FunctionInput (class in underworld.function)

G

 	
 	GaussBorderIntegrationSwarm (class in underworld.swarm)

 	GaussIntegrationSwarm (class in underworld.swarm)

 	generator (underworld.mesh.FeMesh attribute)

 	get_bcs() (underworld.function.analytic.SolNL method)

 	get_coefficients() (in module underworld.scaling)

 	
 	get_data() (in module underworld.timing)

 	get_max_dt() (underworld.systems.AdvectionDiffusion method)

 	globalId (underworld.swarm.SwarmAbstract attribute)

 	GlobalSpaceFillerLayout (class in underworld.swarm.layouts)

 	GradientStiffnessMatrixTerm (class in underworld.systems.sle)

H

 	
 	HeatSolver (class in underworld.systems)

I

 	
 	IndexSet (class in underworld.container)

 	indexSetsPerDof (underworld.conditions.SystemCondition attribute)

 	input (class in underworld.function)

 	Integral (class in underworld.utils)

 	integrate() (underworld.function.Function method)

 	(underworld.mesh.FeMesh_Cartesian method)

 	(underworld.systems.AdvectionDiffusion method)

 	(underworld.systems.SwarmAdvector method)

 	
 	IntegrationSwarm (class in underworld.swarm)

 	invert() (underworld.container.IndexSet method)

 	is_kernel() (in module underworld.utils)

 	IsoSurface (class in glucifer.objects)

L

 	
 	label() (glucifer.objects.Drawing method)

 	line() (glucifer.objects.Drawing method)

 	load() (underworld.mesh.FeMesh method)

 	(underworld.mesh.MeshVariable method)

 	(underworld.swarm.Swarm method)

 	(underworld.swarm.SwarmVariable method)

 	
 	log (class in underworld.function.math)

 	log10 (class in underworld.function.math)

 	log2 (class in underworld.function.math)

 	log_result() (in module underworld.timing)

 	LumpedMassMatrixVectorTerm (class in underworld.systems.sle)

M

 	
 	map (class in underworld.function.branching)

 	maskFn (underworld.utils.Integral attribute)

 	matplotlib_inline() (in module underworld)

 	MatrixAssemblyTerm (class in underworld.systems.sle)

 	MatrixAssemblyTerm_NA__NB__Fn (class in underworld.systems.sle)

 	MatrixAssemblyTerm_NA_i__NB_i__Fn (class in underworld.systems.sle)

 	max (class in underworld.function.misc)

 	max_global() (underworld.function.view.min_max method)

 	max_global_auxiliary() (underworld.function.view.min_max method)

 	max_local() (underworld.function.view.min_max method)

 	max_local_auxiliary() (underworld.function.view.min_max method)

 	max_rank() (underworld.function.view.min_max method)

 	
 	Mesh (class in glucifer.objects)

 	mesh (underworld.mesh.MeshVariable attribute)

 	(underworld.swarm.SwarmAbstract attribute)

 	MeshVariable (class in underworld.mesh)

 	MeshVariable_Projection (class in underworld.utils)

 	min (class in underworld.function.misc)

 	min_global() (underworld.function.view.min_max method)

 	min_global_auxiliary() (underworld.function.view.min_max method)

 	min_local() (underworld.function.view.min_max method)

 	min_local_auxiliary() (underworld.function.view.min_max method)

 	min_max (class in underworld.function.view)

 	min_rank() (underworld.function.view.min_max method)

N

 	
 	NeumannCondition (class in underworld.conditions)

 	nodeDofCount (underworld.mesh.MeshVariable attribute)

 	nodesDomain (underworld.mesh.FeMesh attribute)

 	
 	nodesGlobal (underworld.mesh.FeMesh attribute)

 	nodesLocal (underworld.mesh.FeMesh attribute)

 	non_dimensionalise() (in module underworld.scaling)

 	nProcs() (in module underworld)

O

 	
 	object (underworld.container.ObjectifiedIndexSet attribute)

 	ObjectifiedIndexSet (class in underworld.container)

 	
 	objects (glucifer.Figure attribute)

 	open_viewer() (glucifer.Figure method)

 	owningCell (underworld.swarm.SwarmAbstract attribute)

P

 	
 	particleCoordinates (underworld.swarm.SwarmAbstract attribute)

 	particleGlobalCount (underworld.swarm.Swarm attribute)

 	particleLocalCount (underworld.swarm.SwarmAbstract attribute)

 	particleWeights (underworld.swarm.IntegrationSwarm attribute)

 	PerCellGaussLayout (class in underworld.swarm.layouts)

 	PerCellRandomLayout (class in underworld.swarm.layouts)

 	PerCellSpaceFillerLayout (class in underworld.swarm.layouts)

 	petscVector (underworld.systems.sle.AssembledVector attribute)

 	
 	point() (glucifer.objects.Drawing method)

 	Points (class in glucifer.objects)

 	Polygon (class in underworld.function.shape)

 	populate_using_layout() (underworld.swarm.SwarmAbstract method)

 	PopulationControl (class in underworld.swarm)

 	pow (class in underworld.function.math)

 	PreconditionerMatrixTerm (class in underworld.systems.sle)

 	print_table() (in module underworld.timing)

 	properties (glucifer.Figure attribute)

R

 	
 	rank() (in module underworld)

 	remove() (underworld.container.IndexSet method)

 	repopulate() (underworld.swarm.PopulationControl method)

 	(underworld.swarm.VoronoiIntegrationSwarm method)

 	
 	reset() (in module underworld.timing)

 	(underworld.function.view.min_max method)

 	(underworld.mesh.FeMesh method)

 	resolution (glucifer.Figure attribute)

S

 	
 	SafeMaths (class in underworld.function.exception)

 	Sampler (class in glucifer.objects)

 	save() (glucifer.Figure method)

 	(glucifer.Store method)

 	(underworld.mesh.FeMesh method)

 	(underworld.mesh.MeshVariable method)

 	(underworld.swarm.Swarm method)

 	(underworld.swarm.SwarmVariable method)

 	SavedFileData (class in underworld.utils)

 	script() (glucifer.Figure method)

 	second_invariant (class in underworld.function.tensor)

 	send_command() (glucifer.Figure method)

 	set_inner_method() (underworld.systems.StokesSolver method)

 	set_mg_levels() (underworld.systems.StokesSolver method)

 	set_penalty() (underworld.systems.StokesSolver method)

 	shadow_particles_fetch() (underworld.swarm.Swarm method)

 	show() (glucifer.Figure method)

 	show_grid() (glucifer.Figure static method)

 	sin (class in underworld.function.math)

 	sinh (class in underworld.function.math)

 	size (underworld.container.IndexSet attribute)

 	SolA (class in underworld.function.analytic)

 	SolB (class in underworld.function.analytic)

 	SolC (class in underworld.function.analytic)

 	SolCx (class in underworld.function.analytic)

 	SolDA (class in underworld.function.analytic)

 	SolDB2d (class in underworld.function.analytic)

 	SolDB3d (class in underworld.function.analytic)

 	SolH (class in underworld.function.analytic)

 	SolKx (class in underworld.function.analytic)

 	
 	SolKz (class in underworld.function.analytic)

 	SolM (class in underworld.function.analytic)

 	SolNL (class in underworld.function.analytic)

 	SolutionVector (class in underworld.systems.sle)

 	solve() (underworld.systems.HeatSolver method)

 	(underworld.systems.StokesSolver method)

 	Solver() (in module underworld.systems)

 	specialSets (underworld.mesh.FeMesh attribute)

 	sqrt (class in underworld.function.math)

 	start() (in module underworld.timing)

 	stateId (underworld.swarm.SwarmAbstract attribute)

 	SteadyStateDarcyFlow (class in underworld.systems)

 	SteadyStateHeat (class in underworld.systems)

 	step (glucifer.Figure attribute)

 	Stokes (class in underworld.systems)

 	stokes_callback (underworld.systems.Stokes attribute)

 	StokesSolver (class in underworld.systems)

 	stop() (in module underworld.timing)

 	Store (class in glucifer)

 	stress_limiting_viscosity (class in underworld.function.rheology)

 	subMesh (underworld.mesh.FeMesh_Cartesian attribute)

 	Surface (class in glucifer.objects)

 	Swarm (class in underworld.swarm)

 	swarm (underworld.swarm.SwarmVariable attribute)

 	SwarmAbstract (class in underworld.swarm)

 	SwarmAdvector (class in underworld.systems)

 	SwarmVariable (class in underworld.swarm)

 	symmetric (class in underworld.function.tensor)

 	syncronise() (underworld.mesh.MeshVariable method)

 	SystemCondition (class in underworld.conditions)

T

 	
 	tan (class in underworld.function.math)

 	tanh (class in underworld.function.math)

 	time (underworld.systems.TimeIntegration attribute)

 	
 	TimeIntegration (class in underworld.systems)

 	title (glucifer.Figure attribute)

 	topologicalIndex (underworld.mesh.FeMesh_IndexSet attribute)

U

 	
 	update_particle_owners() (underworld.swarm.Swarm method)

V

 	
 	value (underworld.function.misc.constant attribute)

 	variable (underworld.conditions.SystemCondition attribute)

 	variables (underworld.swarm.SwarmAbstract attribute)

 	vector() (glucifer.objects.Drawing method)

 	VectorArrows (class in glucifer.objects)

 	VectorAssemblyTerm (class in underworld.systems.sle)

 	VectorAssemblyTerm_NA__Fn (class in underworld.systems.sle)

 	
 	VectorAssemblyTerm_NA_i__Fn_i (class in underworld.systems.sle)

 	VectorAssemblyTerm_NA_j__Fn_ij (class in underworld.systems.sle)

 	VectorSurfaceAssemblyTerm_NA__Fn__ni (class in underworld.systems.sle)

 	velocity_rms() (underworld.systems.Stokes method)

 	viewer() (glucifer.Figure method)

 	Volume (class in glucifer.objects)

 	VoronoiIntegrationSwarm (class in underworld.swarm)

W

 	
 	window() (glucifer.Figure method)

X

 	
 	xdmf() (underworld.mesh.MeshVariable method)

 	(underworld.swarm.SwarmVariable method)

nav.xhtml

 Table of Contents

 		
 Underworld

_images/Montage.png
